Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2014_1,
     author = {TOBY GEE and MARK KISIN},
     title = {THE {BREUIL{\textendash}M\'EZARD} {CONJECTURE} {FOR} {POTENTIALLY} {BARSOTTI{\textendash}TATE} {REPRESENTATIONS}},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {2},
     year = {2014},
     doi = {10.1017/fmp.2014.1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2014.1/}
}
                      
                      
                    TY - JOUR AU - TOBY GEE AU - MARK KISIN TI - THE BREUIL–MÉZARD CONJECTURE FOR POTENTIALLY BARSOTTI–TATE REPRESENTATIONS JO - Forum of Mathematics, Pi PY - 2014 VL - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2014.1/ DO - 10.1017/fmp.2014.1 LA - en ID - 10_1017_fmp_2014_1 ER -
TOBY GEE; MARK KISIN. THE BREUIL–MÉZARD CONJECTURE FOR POTENTIALLY BARSOTTI–TATE REPRESENTATIONS. Forum of Mathematics, Pi, Tome 2 (2014). doi: 10.1017/fmp.2014.1
[BLGG11] , and , ‘The Sato–Tate conjecture for Hilbert modular forms’, J. Amer. Math. Soc. 24(2) (2011), 411–469.Google Scholar
[BLGG12] , and , ‘Congruences between Hilbert modular forms: constructing ordinary lifts’, Duke Math. J. 161(8) (2012), 1521–1580.Google Scholar
[BLGG13a] , and , ‘Congruences between Hilbert modular forms: constructing ordinary lifts, II’, Math. Res. Lett. 20(1) (2013), 67–72.Google Scholar
[BLGG13b] , and , ‘Serre weights for rank two unitary groups’, Math. Ann. 356(4) (2013), 1551–1598.Google Scholar
[BLGHT11] , , and , ‘A family of Calabi–Yau varieties and potential automorphy II’, Publ. Res. Inst. Math. Sci. 47(1) (2011), 29–98.Google Scholar
[BLGGT14a] , , and , ‘Potential automorphy and change of weight’, Ann. of Math. (2) 179(2) (2014), 501–609.Google Scholar
[BLGGT14b] , , and , ‘Local-global compatibility for l = p, II’, Ann. Sci. Éc. Norm. Supér. 47(1) (2014), 165–179.Google Scholar
[BC11] and , ‘The sign of Galois representations attached to automorphic forms for unitary groups’, Compositio Math. 147(5) (2011), 1337–1352.Google Scholar
[Bla06] , ‘Hilbert modular forms and the Ramanujan conjecture’, inNoncommutative Geometry and Number Theory, Aspects of Mathematics, E37 (Vieweg, Wiesbaden, 2006), 35–56.Google Scholar
[BD13] and , ‘Formes modulaires de Hilbert modulo et valeurs d’extensions Galoisiennes’, Ann. Sci. Éc. Norm. Supér. (2014), to appear.Google Scholar
[BM02] and , ‘Multiplicités modulaires et représentations de GL( ) et de Gal( Q ∕ ) en l = p’, Duke Math. J. 115(2) (2002), 205–310; with an appendix by G. Henniart.Google Scholar
[BDJ10] , and , ‘On Serre’s conjecture for mod l Galois representations over totally real fields’, Duke Math. J. 155(1) (2010), 105–161.Google Scholar
[Cal12] , ‘Even Galois representations and the Fontaine–Mazur conjecture II’, J. Amer. Math. Soc. 25(2) (2012), 533–554.Google Scholar
[Car86] , ‘Sur les représentations l-adiques associées aux formes modulaires de Hilbert’, Ann. Sci. Éc. Norm. Supér. (4) 19(3) (1986), 409–468.Google Scholar
[CHT08] , and , ‘Automorphy for some l-adic lifts of automorphic mod l Galois representations’, Publ. Math. Inst. Hautes Études Sci. 108 (2008), 1–181.Google Scholar
[DDT97] , and , ‘Fermat’s last theorem’, inElliptic Curves, Modular Forms & Fermat’s Last Theorem (Hong Kong, 1993) (International Press, Cambridge, MA, 1997), 2–140.Google Scholar
[Dia07] , ‘A correspondence between representations of local Galois groups and Lie-type groups’, inL-Functions and Galois Representations, London Mathematical Society Lecture Note Series, 320 (Cambridge University Press, Cambridge, 2007), 187–206.Google Scholar
[EG14] and , ‘A geometric perspective on the Breuil–Mézard conjecture’, J. Inst. Math. Jussieu 13(1) (2014), 183–223.Google Scholar
[GL12] and , ‘A note on potential diagonalizability of crystalline representations’, Math. Ann. 360(1–2) (2014), 481–487.Google Scholar
[Gee06] , ‘A modularity lifting theorem for weight two Hilbert modular forms’, Math. Res. Lett. 13(5–6) (2006), 805–811.Google Scholar
[Gee11a] , ‘Automorphic lifts of prescribed types’, Math. Ann. 350(1) (2011), 107–144.Google Scholar
[Gee11b] , ‘On the weights of mod p Hilbert modular forms’, Invent. Math. 184(1) (2011), 1–46.Google Scholar
[GG12] and , ‘Companion forms for unitary and symplectic groups’, Duke Math. J. 161(2) (2012), 247–303.Google Scholar
[GG13] and , ‘The Breuil–Mézard conjecture for quaternion algebras’, (2013).Google Scholar
[GLS12] , and , ‘Crystalline extensions and the weight part of Serre’s conjecture’, Algebra Number Theory 6(7) (2012), 1537–1559.Google Scholar
[GLS13] , and , ‘The weight part of Serre’s conjecture for GL(2)’, (2013).Google Scholar
[GLS14] , and , ‘The Buzzard–Diamond–Jarvis conjecture for unitary groups’, J. Amer. Math. Soc. 27(2) (2014), 389–435.Google Scholar
[HT01] and , ‘The geometry and cohomology of some simple Shimura varieties’, inAnnals of Mathematics Studies, Vol. 151 (Princeton University Press, Princeton, NJ, 2001); with an appendix by V. G. Berkovich.Google Scholar
[KM74] and , ‘Some consequences of the Riemann hypothesis for varieties over finite fields’, Invent. Math. 23 (1974), 73–77.Google Scholar
[KW09] and , ‘On Serre’s conjecture for 2-dimensional mod p representations of Gal(ℚ∕ℚ)’, Ann. of Math. (2) 169(1) (2009), 229–253.Google Scholar
[Kis08] , ‘Potentially semi-stable deformation rings’, J. Amer. Math. Soc. 21(2) (2008), 513–546.Google Scholar
[Kis09a] , ‘The Fontaine–Mazur conjecture for GL’, J. Amer. Math. Soc. 22(3) (2009), 641–690.Google Scholar
[Kis09b] , ‘Moduli of finite flat group schemes, and modularity’, Ann. of Math. (2) 170(3) (2009), 1085–1180.Google Scholar
[Kis10] , ‘The structure of potentially semi-stable deformation rings’, inProceedings of the International Congress of Mathematicians, Vol. II (Hindustan Book Agency, New Delhi, 2010), 294–311.Google Scholar
[Lab11] , ‘Changement de base C et séries discrètes’, inOn the Stabilization of the Trace formula, Stab. Trace Formula Shimura Var. Arith. Appl., 1 (Int. Press, Somerville, MA, 2011), 429–470.Google Scholar
[Mat89] , ‘Commutative ring theory’, inCambridge Studies in Advanced Mathematics, 2nd edn, Vol. 8 (Cambridge University Press, Cambridge, 1989), ; translated from the Japanese by M. Reid.Google Scholar
[New13] , ‘Serre weights and Shimura curves’, Proc. Lond. Math. Soc. (3) 108(6) (2014), 1471–1500.Google Scholar
[Pil08] , ‘The study of 2-dimensional -adic Galois deformations in the case’, (2008).Google Scholar
[Sai09] , ‘Hilbert modular forms and p-adic Hodge theory’, Compositio Math. 145(5) (2009), 1081–1113.Google Scholar
[San12] , ‘Hilbert–Samuel multiplicities of certain deformation rings’, (2012).Google Scholar
[Sch08] , ‘Weights in Serre’s conjecture for Hilbert modular forms: the ramified case’, Israel J. Math. 166 (2008), 369–391.Google Scholar
[Ser77] , ‘Linear representations of finite groups’, inGraduate Texts in Mathematics, Vol. 42 (Springer-Verlag, New York, 1977); translated from the second French edition by L. L. Scott.Google Scholar
[Sho13] , ‘Local deformation rings and a Breuil–Mézard conjecture when ’, (2013).Google Scholar
[Sno09] , ‘On two dimensional weight two odd representations of totally real fields’, (2009).Google Scholar
[Tay06] , ‘On the meromorphic continuation of degree two L-functions’, Doc. Math. (2006), 729–779; no. extra vol. (electronic).Google Scholar
[Tho12] , ‘On the automorphy of l-adic Galois representations with small residual image’, J. Inst. Math. Jussieu 11(4) (2012), 855–920; with an appendix by R. Guralnick, F. Herzig, R. Taylor and Thorne.Google Scholar
[Tit66] , ‘Classification of algebraic semisimple groups’, inAlgebraic Groups and Discontinuous Subgroups (Proceedings of Symposia in Pure Mathematics, Boulder, CO, 1965) (American Mathematical Society, Providence, RI, 1966), 33–62.Google Scholar
[Vig89a] , ‘Correspondance modulaire galois-quaternions pour un corps p-adique’, inNumber Theory (Ulm, 1987), Lecture Notes in Mathematics, 1380 (Springer, New York, 1989), 254–266.Google Scholar
[Vig89b] , ‘Représentations modulaires de GL(2, F) en caractéristique l, F corps p-adique, p≠l’, Compositio Math. 72(1) (1989), 33–66.Google Scholar
Cité par Sources :