THE GROTHENDIECK CONSTANT IS STRICTLY SMALLER THAN KRIVINE’S BOUND
Forum of Mathematics, Pi, Tome 1 (2013)

Voir la notice de l'article provenant de la source Cambridge University Press

The (real) Grothendieck constant ${K}_{G} $ is the infimum over those $K\in (0, \infty )$ such that for every $m, n\in \mathbb{N} $ and every $m\times n$ real matrix $({a}_{ij} )$ we have

$\begin{eqnarray*}\displaystyle \max _{\{ x_{i}\} _{i= 1}^{m} , \{ {y}_{j} \} _{j= 1}^{n} \subseteq {S}^{n+ m- 1} }\sum _{i= 1}^{m} \sum _{j= 1}^{n} {a}_{ij} \langle {x}_{i} , {y}_{j} \rangle \leqslant K\max _{\{ \varepsilon _{i}\} _{i= 1}^{m} , \{ {\delta }_{j} \} _{j= 1}^{n} \subseteq \{ - 1, 1\} }\sum _{i= 1}^{m} \sum _{j= 1}^{n} {a}_{ij} {\varepsilon }_{i} {\delta }_{j} . \displaystyle\end{eqnarray*}$

The classical Grothendieck inequality asserts the nonobvious fact that the above inequality does hold true for some $K\in (0, \infty )$ that is independent of $m, n$ and $({a}_{ij} )$. Since Grothendieck’s 1953 discovery of this powerful theorem, it has found numerous applications in a variety of areas, but, despite attracting a lot of attention, the exact value of the Grothendieck constant ${K}_{G} $ remains a mystery. The last progress on this problem was in 1977, when Krivine proved that ${K}_{G} \leqslant \pi / 2\log (1+ \sqrt{2} )$ and conjectured that his bound is optimal. Krivine’s conjecture has been restated repeatedly since 1977, resulting in focusing the subsequent research on the search for examples of matrices $({a}_{ij} )$ which exhibit (asymptotically, as $m, n\rightarrow \infty $) a lower bound on ${K}_{G} $ that matches Krivine’s bound. Here, we obtain an improved Grothendieck inequality that holds for all matrices $({a}_{ij} )$ and yields a bound ${K}_{G} \lt \pi / 2\log (1+ \sqrt{2} )- {\varepsilon }_{0} $ for some effective constant ${\varepsilon }_{0} \gt 0$. Other than disproving Krivine’s conjecture, and along the way also disproving an intermediate conjecture of König that was made in 2000 as a step towards Krivine’s conjecture, our main contribution is conceptual: despite dealing with a binary rounding problem, random two-dimensional projections, when combined with a careful partition of ${ \mathbb{R} }^{2} $ in order to round the projected vectors to values in $\{ - 1, 1\} $, perform better than the ubiquitous random hyperplane technique. By establishing the usefulness of higher-dimensional rounding schemes, this fact has consequences in approximation algorithms. Specifically, it yields the best known polynomial-time approximation algorithm for the Frieze–Kannan Cut Norm problem, a generic and well-studied optimization problem with many applications.
@article{10_1017_fmp_2013_4,
     author = {MARK BRAVERMAN and KONSTANTIN MAKARYCHEV and YURY MAKARYCHEV and ASSAF NAOR},
     title = {THE {GROTHENDIECK} {CONSTANT} {IS} {STRICTLY} {SMALLER} {THAN} {KRIVINE{\textquoteright}S} {BOUND}},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {1},
     year = {2013},
     doi = {10.1017/fmp.2013.4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2013.4/}
}
TY  - JOUR
AU  - MARK BRAVERMAN
AU  - KONSTANTIN MAKARYCHEV
AU  - YURY MAKARYCHEV
AU  - ASSAF NAOR
TI  - THE GROTHENDIECK CONSTANT IS STRICTLY SMALLER THAN KRIVINE’S BOUND
JO  - Forum of Mathematics, Pi
PY  - 2013
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2013.4/
DO  - 10.1017/fmp.2013.4
LA  - en
ID  - 10_1017_fmp_2013_4
ER  - 
%0 Journal Article
%A MARK BRAVERMAN
%A KONSTANTIN MAKARYCHEV
%A YURY MAKARYCHEV
%A ASSAF NAOR
%T THE GROTHENDIECK CONSTANT IS STRICTLY SMALLER THAN KRIVINE’S BOUND
%J Forum of Mathematics, Pi
%D 2013
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2013.4/
%R 10.1017/fmp.2013.4
%G en
%F 10_1017_fmp_2013_4
MARK BRAVERMAN; KONSTANTIN MAKARYCHEV; YURY MAKARYCHEV; ASSAF NAOR. THE GROTHENDIECK CONSTANT IS STRICTLY SMALLER THAN KRIVINE’S BOUND. Forum of Mathematics, Pi, Tome 1 (2013). doi: 10.1017/fmp.2013.4

Albiac, F. and Kalton, N. J., Topics in Banach Space Theory, Graduate Texts in Mathematics, 233 (Springer, New York, 2006).Google Scholar

Alon, N. and Naor, A., ‘Approximating the cut-norm via Grothendieck’s inequality’, SIAM J. Comput. 35(4) (2006), 787–803 (electronic).Google Scholar

Andrews, G. E., Askey, R. and Roy, R., Special Functions, Encyclopedia of Mathematics and its Applications, 71 (Cambridge University Press, Cambridge, 1999).Google Scholar

Azor, R., Gillis, J. and Victor, J. D., ‘Combinatorial applications of Hermite polynomials’, SIAM J. Math. Anal. 13(5) (1982), 879–890.Google Scholar

Blei, R., Analysis in Integer and Fractional Dimensions, Cambridge Studies in Advanced Mathematics, 71 (Cambridge University Press, Cambridge, 2001).Google Scholar

Blei, R. C., ‘An elementary proof of the Grothendieck inequality’, Proc. Amer. Math. Soc. 100(1) (1987), 58–60.Google Scholar

Cleve, R., Høyer, P., Toner, B. and Watrous, J., ‘Consequences and limits of nonlocal strategies’, 19th Annual IEEE Conference on Computational Complexity (2004), 236–249.Google Scholar

Davie, A. M., ‘Matrix norms related to Grothendieck’s inequality’, in Banach Spaces (Columbia, Mo., 1984), Lecture Notes in Mathematics, 1166 (Springer, Berlin, 1985), 22–26.Google Scholar | DOI

Diestel, J., Fourie, J. H. and Swart, J., The Metric Theory of Tensor Products (American Mathematical Society, Providence, RI, 2008), Grothendieck’s résumé revisited.Google Scholar

Diestel, J., Jarchow, H. and Tonge, A., Absolutely Summing Operators, Cambridge Studies in Advanced Mathematics, 43 (Cambridge University Press, Cambridge, 1995).Google Scholar | DOI

Fishburn, P. C. and Reeds, J. A., ‘Bell inequalities, Grothendieck’s constant, and root two’, SIAM J. Discrete Math. 7(1) (1994), 48–56.Google Scholar

Frieze, A. and Kannan, R., ‘Quick approximation to matrices and applications’, Combinatorica 19(2) (1999), 175–220.Google Scholar | DOI

Garling, D. J. H., Inequalities: A Journey into Linear Analysis (Cambridge University Press, Cambridge, 2007).Google Scholar

Grothendieck, A., ‘Résumé de la théorie métrique des produits tensoriels topologiques’, Bol. Soc. Mat. São Paulo 8 (1953), 1–79.Google Scholar

Grötschel, M., Lovász, L. and Schrijver, A., ‘The ellipsoid method and its consequences in combinatorial optimization’, Combinatorica 1(2) (1981), 169–197.Google Scholar | DOI

Haagerup, U., ‘A new upper bound for the complex Grothendieck constant’, Israel J. Math. 60(2) (1987), 199–224.Google Scholar | DOI

Jameson, G. J. O., Summing and Nuclear Norms in Banach Space Theory, London Mathematical Society Student Texts, 8 (Cambridge University Press, Cambridge, 1987).Google Scholar

Johnson, W. B. and Lindenstrauss, J., ‘Basic concepts in the geometry of Banach spaces’, in Handbook of the Geometry of Banach Spaces, Vol. I (North-Holland, Amsterdam, 2001), 1–84.Google Scholar

Khot, S., ‘On the power of unique 2-prover 1-round games’, in Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory of Computing (ACM, New York, 2002), 767–775 (electronic).Google Scholar

Khot, S., Kindler, G., Mossel, E. and O’Donnell, R., ‘Optimal inapproximability results for MAX-CUT and other 2-variable CSPs?’, SIAM J. Comput. 37(1) (2007), 319–357 (electronic).Google Scholar

Khot, S. and Naor, A., ‘Grothendieck-type inequalities in combinatorial optimization’, Comm. Pure Appl. Math. 65(7) (2012), 992–1035.Google Scholar

König, H., ‘On an extremal problem originating in questions of unconditional convergence’, in Recent Progress in Multivariate Approximation (Witten-Bommerholz, 2000), Internat. Ser. Numer. Math., 137 (Birkhäuser, Basel, 2001), 185–192.Google Scholar

Krivine, J.-L., ‘Sur la constante de Grothendieck’, C. R. Acad. Sci. Paris Sér. A–B 284(8) (1977), A445–A446.Google Scholar

Krivine, J.-L., ‘Constantes de Grothendieck et fonctions de type positif sur les sphères’, Adv. Math. 31(1) (1979), 16–30.Google Scholar

Lieb, E. H., ‘Gaussian kernels have only Gaussian maximizers’, Invent. Math. 102(1) (1990), 179–208.Google Scholar

Lindenstrauss, J. and Pełczyński, A., ‘Absolutely summing operators in -spaces and their applications’, Studia Math. 29 (1968), 275–326.Google Scholar

Lindenstrauss, J. and Tzafriri, L., Classical Banach Spaces. I. Sequence Spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, 92 (Springer, Berlin, 1977).Google Scholar

Maurey, B., ‘Une nouvelle démonstration d’un théorème de Grothendieck’, in Séminaire Maurey-Schwartz Année 1972–1973: Espaces  et applications radonifiantes, Exp. No. 22 (Centre de Math., École Polytech, Paris, 1973), 7.Google Scholar

Maurey, B. and Pisier, G., ‘Un théorème d’extrapolation et ses conséquences’, C. R. Acad. Sci. Paris Sér. A–B 277 (1973), A39–A42.Google Scholar

Naor, A. and Regev, O., ‘Krivine schemes are optimal’, Proc. Amer. Math. Soc., 2012, to appear, preprint available at .Google Scholar | arXiv

Pisier, G., ‘Grothendieck’s theorem for noncommutative -algebras, with an appendix on Grothendieck’s constants’, J. Funct. Anal. 29(3) (1978), 397–415.Google Scholar

Pisier, G., Factorization of Linear Operators and Geometry of Banach Spaces, CBMS Regional Conference Series in Mathematics, 60 (Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1986).Google Scholar | DOI

Pisier, G., ‘Grothendieck’s theorem, past and present’, Bull. Amer. Math. Soc. (N.S.) 49(2) (2012), 237–323.Google Scholar

Raghavendra, P. and Steurer, D., ‘Towards computing the Grothendieck constant’, Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, 2009, 525–534.Google Scholar

Reeds, J. A., ‘A new lower bound on the real Grothendieck constant’, unpublished manuscript, available at http://www.dtc.umn.edu/reedsj/bound2.dvi 1991.Google Scholar

Rietz, R. E., ‘A proof of the Grothendieck inequality’, Israel J. Math. 19 (1974), 271–276.Google Scholar | DOI

Schwartz, L., Geometry and Probability in Banach Spaces, Lecture Notes in Mathematics, 852 (Springer, Berlin, 1981), based on notes taken by Paul R. Chernoff.Google Scholar

Tsirelson, B. S., ‘Quantum analogues of Bell’s inequalities. The case of two spatially divided domains’, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 142 (1985), 174–194, 200. Problems of the theory of probability distributions, IX.Google Scholar

Cité par Sources :