Voir la notice de l'article provenant de la source Cambridge University Press
| $\begin{eqnarray*}\displaystyle \max _{\{ x_{i}\} _{i= 1}^{m} , \{ {y}_{j} \} _{j= 1}^{n} \subseteq {S}^{n+ m- 1} }\sum _{i= 1}^{m} \sum _{j= 1}^{n} {a}_{ij} \langle {x}_{i} , {y}_{j} \rangle \leqslant K\max _{\{ \varepsilon _{i}\} _{i= 1}^{m} , \{ {\delta }_{j} \} _{j= 1}^{n} \subseteq \{ - 1, 1\} }\sum _{i= 1}^{m} \sum _{j= 1}^{n} {a}_{ij} {\varepsilon }_{i} {\delta }_{j} . \displaystyle\end{eqnarray*}$ | 
@article{10_1017_fmp_2013_4,
     author = {MARK BRAVERMAN and KONSTANTIN MAKARYCHEV and YURY MAKARYCHEV and ASSAF NAOR},
     title = {THE {GROTHENDIECK} {CONSTANT} {IS} {STRICTLY} {SMALLER} {THAN} {KRIVINE{\textquoteright}S} {BOUND}},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {1},
     year = {2013},
     doi = {10.1017/fmp.2013.4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2013.4/}
}
                      
                      
                    TY - JOUR AU - MARK BRAVERMAN AU - KONSTANTIN MAKARYCHEV AU - YURY MAKARYCHEV AU - ASSAF NAOR TI - THE GROTHENDIECK CONSTANT IS STRICTLY SMALLER THAN KRIVINE’S BOUND JO - Forum of Mathematics, Pi PY - 2013 VL - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2013.4/ DO - 10.1017/fmp.2013.4 LA - en ID - 10_1017_fmp_2013_4 ER -
%0 Journal Article %A MARK BRAVERMAN %A KONSTANTIN MAKARYCHEV %A YURY MAKARYCHEV %A ASSAF NAOR %T THE GROTHENDIECK CONSTANT IS STRICTLY SMALLER THAN KRIVINE’S BOUND %J Forum of Mathematics, Pi %D 2013 %V 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2013.4/ %R 10.1017/fmp.2013.4 %G en %F 10_1017_fmp_2013_4
MARK BRAVERMAN; KONSTANTIN MAKARYCHEV; YURY MAKARYCHEV; ASSAF NAOR. THE GROTHENDIECK CONSTANT IS STRICTLY SMALLER THAN KRIVINE’S BOUND. Forum of Mathematics, Pi, Tome 1 (2013). doi: 10.1017/fmp.2013.4
and , Topics in Banach Space Theory, Graduate Texts in Mathematics, 233 (Springer, New York, 2006).Google Scholar
and , ‘Approximating the cut-norm via Grothendieck’s inequality’, SIAM J. Comput. 35(4) (2006), 787–803 (electronic).Google Scholar
, and , Special Functions, Encyclopedia of Mathematics and its Applications, 71 (Cambridge University Press, Cambridge, 1999).Google Scholar
, and , ‘Combinatorial applications of Hermite polynomials’, SIAM J. Math. Anal. 13(5) (1982), 879–890.Google Scholar
, Analysis in Integer and Fractional Dimensions, Cambridge Studies in Advanced Mathematics, 71 (Cambridge University Press, Cambridge, 2001).Google Scholar
, ‘An elementary proof of the Grothendieck inequality’, Proc. Amer. Math. Soc. 100(1) (1987), 58–60.Google Scholar
, , and , ‘Consequences and limits of nonlocal strategies’, 19th Annual IEEE Conference on Computational Complexity (2004), 236–249.Google Scholar
, ‘Matrix norms related to Grothendieck’s inequality’, in Banach Spaces (Columbia, Mo., 1984), Lecture Notes in Mathematics, 1166 (Springer, Berlin, 1985), 22–26.Google Scholar | DOI
, and , The Metric Theory of Tensor Products (American Mathematical Society, Providence, RI, 2008), Grothendieck’s résumé revisited.Google Scholar
, and , Absolutely Summing Operators, Cambridge Studies in Advanced Mathematics, 43 (Cambridge University Press, Cambridge, 1995).Google Scholar | DOI
and , ‘Bell inequalities, Grothendieck’s constant, and root two’, SIAM J. Discrete Math. 7(1) (1994), 48–56.Google Scholar
and , ‘Quick approximation to matrices and applications’, Combinatorica 19(2) (1999), 175–220.Google Scholar | DOI
, Inequalities: A Journey into Linear Analysis (Cambridge University Press, Cambridge, 2007).Google Scholar
, ‘Résumé de la théorie métrique des produits tensoriels topologiques’, Bol. Soc. Mat. São Paulo 8 (1953), 1–79.Google Scholar
, and , ‘The ellipsoid method and its consequences in combinatorial optimization’, Combinatorica 1(2) (1981), 169–197.Google Scholar | DOI
, ‘A new upper bound for the complex Grothendieck constant’, Israel J. Math. 60(2) (1987), 199–224.Google Scholar | DOI
, Summing and Nuclear Norms in Banach Space Theory, London Mathematical Society Student Texts, 8 (Cambridge University Press, Cambridge, 1987).Google Scholar
and , ‘Basic concepts in the geometry of Banach spaces’, in Handbook of the Geometry of Banach Spaces, Vol. I (North-Holland, Amsterdam, 2001), 1–84.Google Scholar
, ‘On the power of unique 2-prover 1-round games’, in Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory of Computing (ACM, New York, 2002), 767–775 (electronic).Google Scholar
, , and , ‘Optimal inapproximability results for MAX-CUT and other 2-variable CSPs?’, SIAM J. Comput. 37(1) (2007), 319–357 (electronic).Google Scholar
and , ‘Grothendieck-type inequalities in combinatorial optimization’, Comm. Pure Appl. Math. 65(7) (2012), 992–1035.Google Scholar
, ‘On an extremal problem originating in questions of unconditional convergence’, in Recent Progress in Multivariate Approximation (Witten-Bommerholz, 2000), Internat. Ser. Numer. Math., 137 (Birkhäuser, Basel, 2001), 185–192.Google Scholar
, ‘Sur la constante de Grothendieck’, C. R. Acad. Sci. Paris Sér. A–B 284(8) (1977), A445–A446.Google Scholar
, ‘Constantes de Grothendieck et fonctions de type positif sur les sphères’, Adv. Math. 31(1) (1979), 16–30.Google Scholar
, ‘Gaussian kernels have only Gaussian maximizers’, Invent. Math. 102(1) (1990), 179–208.Google Scholar
and , ‘Absolutely summing operators in -spaces and their applications’, Studia Math. 29 (1968), 275–326.Google Scholar
and , Classical Banach Spaces. I. Sequence Spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, 92 (Springer, Berlin, 1977).Google Scholar
, ‘Une nouvelle démonstration d’un théorème de Grothendieck’, in Séminaire Maurey-Schwartz Année 1972–1973: Espaces et applications radonifiantes, Exp. No. 22 (Centre de Math., École Polytech, Paris, 1973), 7.Google Scholar
and , ‘Un théorème d’extrapolation et ses conséquences’, C. R. Acad. Sci. Paris Sér. A–B 277 (1973), A39–A42.Google Scholar
and , ‘Krivine schemes are optimal’, Proc. Amer. Math. Soc., 2012, to appear, preprint available at .Google Scholar | arXiv
, ‘Grothendieck’s theorem for noncommutative -algebras, with an appendix on Grothendieck’s constants’, J. Funct. Anal. 29(3) (1978), 397–415.Google Scholar
, Factorization of Linear Operators and Geometry of Banach Spaces, CBMS Regional Conference Series in Mathematics, 60 (Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1986).Google Scholar | DOI
, ‘Grothendieck’s theorem, past and present’, Bull. Amer. Math. Soc. (N.S.) 49(2) (2012), 237–323.Google Scholar
and , ‘Towards computing the Grothendieck constant’, Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, 2009, 525–534.Google Scholar
, ‘A new lower bound on the real Grothendieck constant’, unpublished manuscript, available at http://www.dtc.umn.edu/reedsj/bound2.dvi 1991.Google Scholar
, ‘A proof of the Grothendieck inequality’, Israel J. Math. 19 (1974), 271–276.Google Scholar | DOI
, Geometry and Probability in Banach Spaces, Lecture Notes in Mathematics, 852 (Springer, Berlin, 1981), based on notes taken by Paul R. Chernoff.Google Scholar
, ‘Quantum analogues of Bell’s inequalities. The case of two spatially divided domains’, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 142 (1985), 174–194, 200. Problems of the theory of probability distributions, IX.Google Scholar
Cité par Sources :
