MOCK THETA FUNCTIONS AND QUANTUM MODULAR FORMS
Forum of Mathematics, Pi, Tome 1 (2013)

Voir la notice de l'article provenant de la source Cambridge University Press

Ramanujan’s last letter to Hardy concerns the asymptotic properties of modular forms and his ‘mock theta functions’. For the mock theta function $f(q)$, Ramanujan claims that as $q$ approaches an even-order $2k$ root of unity, we have

$\begin{eqnarray*}f(q)- (- 1)^{k} (1- q)(1- {q}^{3} )(1- {q}^{5} )\cdots (1- 2q+ 2{q}^{4} - \cdots )= O(1).\end{eqnarray*}$

We prove Ramanujan’s claim as a special case of a more general result. The implied constants in Ramanujan’s claim are not mysterious. They arise in Zagier’s theory of ‘quantum modular forms’. We provide explicit closed expressions for these ‘radial limits’ as values of a ‘quantum’ $q$-hypergeometric function which underlies a new relationship between Dyson’s rank mock theta function and the Andrews–Garvan crank modular form. Along these lines, we show that the Rogers–Fine false $\vartheta $-functions, functions which have not been well understood within the theory of modular forms, specialize to quantum modular forms.
@article{10_1017_fmp_2013_3,
     author = {AMANDA FOLSOM and KEN ONO and ROBERT C. RHOADES},
     title = {MOCK {THETA} {FUNCTIONS} {AND} {QUANTUM} {MODULAR} {FORMS}},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {1},
     year = {2013},
     doi = {10.1017/fmp.2013.3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2013.3/}
}
TY  - JOUR
AU  - AMANDA FOLSOM
AU  - KEN ONO
AU  - ROBERT C. RHOADES
TI  - MOCK THETA FUNCTIONS AND QUANTUM MODULAR FORMS
JO  - Forum of Mathematics, Pi
PY  - 2013
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2013.3/
DO  - 10.1017/fmp.2013.3
LA  - en
ID  - 10_1017_fmp_2013_3
ER  - 
%0 Journal Article
%A AMANDA FOLSOM
%A KEN ONO
%A ROBERT C. RHOADES
%T MOCK THETA FUNCTIONS AND QUANTUM MODULAR FORMS
%J Forum of Mathematics, Pi
%D 2013
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2013.3/
%R 10.1017/fmp.2013.3
%G en
%F 10_1017_fmp_2013_3
AMANDA FOLSOM; KEN ONO; ROBERT C. RHOADES. MOCK THETA FUNCTIONS AND QUANTUM MODULAR FORMS. Forum of Mathematics, Pi, Tome 1 (2013). doi: 10.1017/fmp.2013.3

Andrews, G. E., ‘On the theorems of Watson and Dragonette for Ramanujan’s mock theta functions’, Amer. J. Math. 88 (1966), 454–490.Google Scholar

Andrews, G. E., ‘Concave and convex compositions’, Ramanujan J., to appear.Google Scholar

Andrews, G. E. and Berndt, B. C., ‘Your hit parade – the top ten most fascinating formulas from Ramanujan’s lost notebook’, Notices Amer. Math. Soc. 55 (2008), 18–30.Google Scholar

Andrews, G. E. and Berndt, B. C., Ramanujan’s Lost Notebook. Part II (Springer, New York, 2009).Google Scholar

Andrews, G. E. and Garvan, F., ‘Dyson’s crank of a partition’, Bull. Amer. Math. Soc. (N.S.) 18 (1988), 167–171.Google Scholar

Andrews, G. E., Ono, K. and Urroz, J., ‘q-identities and values of certain L-functions’, Duke Math. J. 108 (2001), 395–419.Google Scholar | DOI

Andrews, G. E., Rhoades, R. C. and Zwegers, S., ‘Modularity of the concave composition generating function’, Algebra Number Theory, (2013), accepted for publication.Google Scholar

Atkin, A. O. L. and Swinnerton-Dyer, H. P. F., ‘Some properties of partitions’, Proc. Lond. Math. Soc. 4 (1954), 84–106.Google Scholar

Bajpai, J., Kimport, S., Liang, J., Ma, D. and Ricci, J., ‘Bilateral series and Ramanujan’s radial limits’, Proc. Amer. Math. Soc., (2013), accepted for publication.Google Scholar | DOI

Berndt, B. C., ‘Ramanujan, his lost notebook, its importance’, preprint.Google Scholar

Berndt, B. C. and Rankin, R. A., Ramanujan: Letters and Commentary (American Mathematical Society, Providence, 1995).Google Scholar | DOI

Bringmann, K. and Folsom, A., ‘On the asymptotic behavior of Kac–Wakimoto characters’, Proc. Amer. Math. Soc. 141(5) (2013), 1567–1576.Google Scholar

Bringmann, K., Folsom, A. and Rhoades, R. C., ‘Partial and mock theta functions as -hypergeometric series’, in Ramanujan’s 125th Anniversary Special Volume, Ramanujan J. 29(1–3) (2012), 295–310 (special issue).Google Scholar

Bringmann, K., Mahlburg, K. and Rhoades, R. C., ‘Taylor coefficients of mock-Jacobi forms and moments of partition statistics’, Math. Proc. Cambridge Philos. Soc., to appear.Google Scholar

Bringmann, K. and Ono, K., ‘The mock theta function conjecture and partition ranks’, Invent. Math. 165 (2006), 243–266.Google Scholar

Bringmann, K. and Ono, K., ‘Dyson’s ranks and Maass forms’, Ann. of Math. 171 (2010), 419–449.Google Scholar

Bringmann, K., Ono, K. and Rhoades, R., ‘Eulerian series as modular forms’, J. Amer. Math. Soc. 21 (2008), 1085–1104.Google Scholar

Bruinier, J. H. and Funke, J., ‘On two geometric theta lifts’, Duke Math. J. 125 (2004), 45–90.Google Scholar

Bryson, J., Ono, K., Pitman, S. and Rhoades, R. C., ‘Unimodal sequences and quantum and mock modular forms’, Proc. Natl. Acad. Sci. USA 109(40) (2012), 16063–16067.Google Scholar | DOI

Choi, Y.-S., ‘The basic bilateral hypergeometric series and the mock theta functions’, Ramanujan J. 24 (2011), 345–386.Google Scholar | DOI

Coogan, G. and Ono, K., ‘A -series identity and the arithmetic of Hurwitz-zeta functions’, Proc. Amer. Math. Soc. 131 (2003), 719–724.Google Scholar

Dragonette, L., ‘Some asymptotic formulae for the mock theta series of Ramanujan’, Trans. Amer. Math. Soc. 72 (1952), 474–500.Google Scholar

Dyson, F., ‘Some guesses in the theory of partitions’, Eureka 8 (1944), 10–15.Google Scholar

Fine, N. J., Basic Hypergeometric Series and Applications, Math. Surveys and Monographs, 27 (American Mathematical Society, Providence, 1988).Google Scholar

Folsom, A., ‘Mock modular forms and -distinct partitions’, preprint.Google Scholar

Gasper, G. and Rahman, M., Basic Hypergeometric Series, Ency. Math. and App., 35 (Cambridge University Press, Cambridge, 1990).Google Scholar

Gordon, B. and Mcintosh, R., ‘A survey of classical mock theta functions’, in Partitions, q-series and Mmodular Forms, Dev. Math., 23 (Springer, New York, 2012), 95–144.Google Scholar | DOI

Griffin, M., Ono, K. and Rolen, L., ‘Ramanujan’s mock theta functions’, Proc. Natl. Acad. Sci., USA 110 (2013), 5765–5768.Google ScholarPubMed | DOI

Hikami, K., ‘Quantum invariant for torus link and modular forms’, Comm. Math. Phys. 246 (2004), 403–426.Google Scholar

Kubert, D. S. and Lang, S., Modular Units (Springer, Berlin, 1981).Google Scholar

Lawrence, R. and Zagier, D., ‘Modular forms and quantum invariants of 3-manifolds’, Asian J. Math. 3 (1999), 93–108.Google Scholar

Lovejoy, J. and Ono, K., ‘Hypergeometric generating functions for the values of Dirichlet and other -functions’, Proc. Natl. Acad. Sci., USA 100 (2003), 6904–6909.Google Scholar

Mahlburg, K., ‘Partition congruences and the Andrews–Garvan–Dyson crank’, Proc. Natl. Acad. Sci. USA 105 (2005), 15373–15376.Google Scholar | DOI

Mortenson, E. T., ‘On the dual nature of partial theta functions and Appell–Lerch sums’, preprint. arxiv:1208.6316.Google Scholar

Ono, K., ‘Unearthing the visions of a master: harmonic Maass forms and number theory’, Proc. 2008 Harvard-MIT Current Developments in Mathematics Conf., (2009), Somerville, Ma., 347–454.Google Scholar

Rademacher, H., Topics in Analytic Number Theory, Die Grund. der math. Wiss., Band, 169 (Springer, New York–Heidelberg, 1973).Google Scholar

Rhoades, R. C., ‘Asymptotics for the number of strongly unimodal sequences’, Int. Math. Res. Not., to appear.Google Scholar

Rhoades, R. C., ‘A unified approach to partial and mock theta functions’, Math. Res. Lett., to appear.Google Scholar

Rogers, L., ‘On two theorems of combinatory analysis and some allied identities’, Proc. Lond. Math. Soc. (2) 16 (1917), 315–336.Google Scholar

Watson, G. N., ‘The final problem: an account of the mock theta functions’, J. Lond. Math. Soc. 2(2) (1936), 55–80.Google Scholar

Zagier, D., ‘Vassiliev invariants and a strange identity related to the Dedekind eta-function’, Topology 40 (2001), 945–960.Google Scholar

Zagier, D., ‘Ramanujan’s mock theta functions and their applications [d’aprés Zwegers and Bringmann–Ono]’, Sém. Bourbaki (2007/2008), Astérisque, No. 326, Exp. No. 986, vii–viii, (2010), 143–164.Google Scholar

Zagier, D., ‘Quantum modular forms’, in Quanta of Maths: Conference in Honor of Alain Connes, Clay Mathematics Proceedings, 11 (American Mathematical Society, Providence, 2010), 659–675.Google Scholar

Zwegers, S., ‘Mock -functions and real analytic modular forms’, in q-series with Applications to Combinatorics, Number Theory, and Physics, Contemporary Mathematics, 291 (eds. Berndt, B. C. and Ono, K.) (American Mathematical Society, 2001), 269–277.Google Scholar

Zwegers, S., Mock Theta Functions, Ph.D. Thesis (Advisor: D. Zagier), (Universiteit Utrecht, 2002).Google Scholar

Zwegers, S., ‘Multivariable Appell functions’, preprint.Google Scholar

Cité par Sources :