Voir la notice de l'article provenant de la source Cambridge University Press
| $\begin{eqnarray*}f(q)- (- 1)^{k} (1- q)(1- {q}^{3} )(1- {q}^{5} )\cdots (1- 2q+ 2{q}^{4} - \cdots )= O(1).\end{eqnarray*}$ | 
@article{10_1017_fmp_2013_3,
     author = {AMANDA FOLSOM and KEN ONO and ROBERT C. RHOADES},
     title = {MOCK {THETA} {FUNCTIONS} {AND} {QUANTUM} {MODULAR} {FORMS}},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {1},
     year = {2013},
     doi = {10.1017/fmp.2013.3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2013.3/}
}
                      
                      
                    AMANDA FOLSOM; KEN ONO; ROBERT C. RHOADES. MOCK THETA FUNCTIONS AND QUANTUM MODULAR FORMS. Forum of Mathematics, Pi, Tome 1 (2013). doi: 10.1017/fmp.2013.3
, ‘On the theorems of Watson and Dragonette for Ramanujan’s mock theta functions’, Amer. J. Math. 88 (1966), 454–490.Google Scholar
, ‘Concave and convex compositions’, Ramanujan J., to appear.Google Scholar
and , ‘Your hit parade – the top ten most fascinating formulas from Ramanujan’s lost notebook’, Notices Amer. Math. Soc. 55 (2008), 18–30.Google Scholar
and , Ramanujan’s Lost Notebook. Part II (Springer, New York, 2009).Google Scholar
and , ‘Dyson’s crank of a partition’, Bull. Amer. Math. Soc. (N.S.) 18 (1988), 167–171.Google Scholar
, and , ‘q-identities and values of certain L-functions’, Duke Math. J. 108 (2001), 395–419.Google Scholar | DOI
, and , ‘Modularity of the concave composition generating function’, Algebra Number Theory, (2013), accepted for publication.Google Scholar
and , ‘Some properties of partitions’, Proc. Lond. Math. Soc. 4 (1954), 84–106.Google Scholar
, , , and , ‘Bilateral series and Ramanujan’s radial limits’, Proc. Amer. Math. Soc., (2013), accepted for publication.Google Scholar | DOI
, ‘Ramanujan, his lost notebook, its importance’, preprint.Google Scholar
and , Ramanujan: Letters and Commentary (American Mathematical Society, Providence, 1995).Google Scholar | DOI
and , ‘On the asymptotic behavior of Kac–Wakimoto characters’, Proc. Amer. Math. Soc. 141(5) (2013), 1567–1576.Google Scholar
, and , ‘Partial and mock theta functions as -hypergeometric series’, in Ramanujan’s 125th Anniversary Special Volume, Ramanujan J. 29(1–3) (2012), 295–310 (special issue).Google Scholar
, and , ‘Taylor coefficients of mock-Jacobi forms and moments of partition statistics’, Math. Proc. Cambridge Philos. Soc., to appear.Google Scholar
and , ‘The mock theta function conjecture and partition ranks’, Invent. Math. 165 (2006), 243–266.Google Scholar
and , ‘Dyson’s ranks and Maass forms’, Ann. of Math. 171 (2010), 419–449.Google Scholar
, and , ‘Eulerian series as modular forms’, J. Amer. Math. Soc. 21 (2008), 1085–1104.Google Scholar
and , ‘On two geometric theta lifts’, Duke Math. J. 125 (2004), 45–90.Google Scholar
, , and , ‘Unimodal sequences and quantum and mock modular forms’, Proc. Natl. Acad. Sci. USA 109(40) (2012), 16063–16067.Google Scholar | DOI
, ‘The basic bilateral hypergeometric series and the mock theta functions’, Ramanujan J. 24 (2011), 345–386.Google Scholar | DOI
and , ‘A -series identity and the arithmetic of Hurwitz-zeta functions’, Proc. Amer. Math. Soc. 131 (2003), 719–724.Google Scholar
, ‘Some asymptotic formulae for the mock theta series of Ramanujan’, Trans. Amer. Math. Soc. 72 (1952), 474–500.Google Scholar
, ‘Some guesses in the theory of partitions’, Eureka 8 (1944), 10–15.Google Scholar
, Basic Hypergeometric Series and Applications, Math. Surveys and Monographs, 27 (American Mathematical Society, Providence, 1988).Google Scholar
, ‘Mock modular forms and -distinct partitions’, preprint.Google Scholar
and , Basic Hypergeometric Series, Ency. Math. and App., 35 (Cambridge University Press, Cambridge, 1990).Google Scholar
and , ‘A survey of classical mock theta functions’, in Partitions, q-series and Mmodular Forms, Dev. Math., 23 (Springer, New York, 2012), 95–144.Google Scholar | DOI
, and , ‘Ramanujan’s mock theta functions’, Proc. Natl. Acad. Sci., USA 110 (2013), 5765–5768.Google ScholarPubMed | DOI
, ‘Quantum invariant for torus link and modular forms’, Comm. Math. Phys. 246 (2004), 403–426.Google Scholar
and , Modular Units (Springer, Berlin, 1981).Google Scholar
and , ‘Modular forms and quantum invariants of 3-manifolds’, Asian J. Math. 3 (1999), 93–108.Google Scholar
and , ‘Hypergeometric generating functions for the values of Dirichlet and other -functions’, Proc. Natl. Acad. Sci., USA 100 (2003), 6904–6909.Google Scholar
, ‘Partition congruences and the Andrews–Garvan–Dyson crank’, Proc. Natl. Acad. Sci. USA 105 (2005), 15373–15376.Google Scholar | DOI
, ‘On the dual nature of partial theta functions and Appell–Lerch sums’, preprint. arxiv:1208.6316.Google Scholar
, ‘Unearthing the visions of a master: harmonic Maass forms and number theory’, Proc. 2008 Harvard-MIT Current Developments in Mathematics Conf., (2009), Somerville, Ma., 347–454.Google Scholar
, Topics in Analytic Number Theory, Die Grund. der math. Wiss., Band, 169 (Springer, New York–Heidelberg, 1973).Google Scholar
, ‘Asymptotics for the number of strongly unimodal sequences’, Int. Math. Res. Not., to appear.Google Scholar
, ‘A unified approach to partial and mock theta functions’, Math. Res. Lett., to appear.Google Scholar
, ‘On two theorems of combinatory analysis and some allied identities’, Proc. Lond. Math. Soc. (2) 16 (1917), 315–336.Google Scholar
, ‘The final problem: an account of the mock theta functions’, J. Lond. Math. Soc. 2(2) (1936), 55–80.Google Scholar
, ‘Vassiliev invariants and a strange identity related to the Dedekind eta-function’, Topology 40 (2001), 945–960.Google Scholar
, ‘Ramanujan’s mock theta functions and their applications [d’aprés Zwegers and Bringmann–Ono]’, Sém. Bourbaki (2007/2008), Astérisque, No. 326, Exp. No. 986, vii–viii, (2010), 143–164.Google Scholar
, ‘Quantum modular forms’, in Quanta of Maths: Conference in Honor of Alain Connes, Clay Mathematics Proceedings, 11 (American Mathematical Society, Providence, 2010), 659–675.Google Scholar
, ‘Mock -functions and real analytic modular forms’, in q-series with Applications to Combinatorics, Number Theory, and Physics, Contemporary Mathematics, 291 (eds. and ) (American Mathematical Society, 2001), 269–277.Google Scholar
, Mock Theta Functions, Ph.D. Thesis (Advisor: D. Zagier), (Universiteit Utrecht, 2002).Google Scholar
, ‘Multivariable Appell functions’, preprint.Google Scholar
Cité par Sources :
