Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2013_2,
     author = {MATTHEW BAKER and LAURA DE MARCO},
     title = {SPECIAL {CURVES} {AND} {POSTCRITICALLY} {FINITE} {POLYNOMIALS}},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {1},
     year = {2013},
     doi = {10.1017/fmp.2013.2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2013.2/}
}
                      
                      
                    MATTHEW BAKER; LAURA DE MARCO. SPECIAL CURVES AND POSTCRITICALLY FINITE POLYNOMIALS. Forum of Mathematics, Pi, Tome 1 (2013). doi: 10.1017/fmp.2013.2
[Ah] [Ah], Complex Analysis, 3rd edn. (McGraw-Hill Book Co., New York, 1978). An introduction to the theory of analytic functions of one complex variable, International Series in Pure and Applied Mathematics.Google Scholar
[An] [An], ‘Finitude des couples d’invariants modulaires singuliers sur une courbe algébrique plane non modulaire’, J. Reine Angew. Math. 505 (1998), 203–208.Google Scholar
[BD] [BD] and , ‘Preperiodic points and unlikely intersections’, Duke Math. J. 159 (2011), 1–29.Google Scholar | DOI
[BR] [BR] and , Potential Theory and Dynamics on the Berkovich Projective Line, Mathematical Surveys and Monographs, 159 (American Mathematical Society, Providence, RI, 2010).Google Scholar
[Be1] [Be1], ‘Symmetries of Julia sets’, Bull. Lond. Math. Soc. 22 (1990), 576–582.Google Scholar
[Be2] [Be2], ‘Heights and preperiodic points of polynomials over function fields’, Int. Math. Res. Not. IMRN 62 (2005), 3855–3866.Google Scholar | DOI
[BH1] [BH1] and , ‘The iteration of cubic polynomials. I. The global topology of parameter space’, Acta Math. 160 (1988), 143–206.Google Scholar
[BE] [BE] and , ‘Bifurcation measure and postcritically finite rational maps’, in Complex Dynamics (A K Peters, Wellesley, MA, 2009), 491–512.Google Scholar
[CL] [CL], ‘Mesures et équidistribution sur les espaces de Berkovich’, J. Reine Angew. Math. 595 (2006), 215–235.Google Scholar
[De1] [De1], ‘Dynamics of rational maps: a current on the bifurcation locus’, Math. Res. Lett. 8 (2001), 57–66.Google Scholar
[De2] [De2], ‘Dynamics of rational maps: Lyapunov exponents, bifurcations, and capacity’, Math. Ann. 326 (2003), 43–73.Google Scholar
[DM] [DM] and , ‘Trees and the dynamics of polynomials’, Ann. Sci. Éc. Norm. Super 41 (2008), 337–383.Google Scholar
[DH] [DH] and , ‘A proof of Thurston’s topological characterization of rational functions’, Acta Math. 171(2) (1993), 263–297.Google Scholar
[DF] [DF] and , ‘Distribution of rational maps with a preperiodic critical point’, Amer. J. Math. 130 (2008), 979–1032.Google Scholar
[Du] [Du], Univalent Functions, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 259 (Springer, New York, 1983).Google Scholar
[FRL] [FRL] and , ‘Équidistribution quantitative des points de petite hauteur sur la droite projective’, Math. Ann. 335 (2006), 311–361.Google Scholar
[GHT1] [GHT1], and , ‘Preperiodic points for families of polynomials’, Algebra and Number Theory, to appear.Google Scholar
[GHT2] [GHT2], and , ‘Preperiodic points for families of rational maps’ (2012), submitted for publication.Google Scholar
[GTZ] [GTZ], and , ‘Towards a dynamical Manin–Mumford conjecture’, Int. Math. Res. Not. IMRN 22 (2011), 5109–5122.Google Scholar
[Hi] [Hi], ‘Autour d’une conjecture de Serge Lang’, Invent. Math. 94 (1988), 575–603.Google Scholar
[La] [La], ‘Équations diophantiennes exponentielles’, Invent. Math. 78 (1984), 299–327.Google Scholar
[MSS] [MSS], and , ‘On the dynamics of rational maps’, Ann. Sci. Éc. Norm. Super 16 (1983), 193–217.Google Scholar
[Mc1] [Mc1], ‘Families of rational maps and iterative root-finding algorithms’, Ann. of Math. (2) 125 (1987), 467–493.Google Scholar
[Mc2] [Mc2], ‘The Mandelbrot set is universal’, in The Mandelbrot Set, Theme and Variations, London Mathematical Society Lecture Note Series, 274 (Cambridge Univ. Press, Cambridge, 2000), 1–17.Google Scholar
[MS] [MS] and , ‘Invariant varieties for polynomial dynamical systems’, Ann. of Math. (2), to appear.Google Scholar
[Mi1] [Mi1], ‘Remarks on iterated cubic maps’, Exp. Math. 1 (1992), 5–24.Google Scholar
[Mi2] [Mi2], Dynamics in One Complex Variable, 3rd edn. Annals of Mathematics Studies, 160 (Princeton University Press, Princeton, NJ, 2006).Google Scholar
[Pi] [Pi], ‘O-minimality and the André–Oort conjecture for ’, Ann. of Math. (2) 173 (2011), 1779–1840.Google Scholar
[Ra1] [Ra1], ‘Courbes sur une variété abélienne et points de torsion’, Invent. Math. 71 (1983), 207–233.Google Scholar
[Ra2] [Ra2], ‘Sous-variétés d’une variété abélienne et points de torsion’, in Arithmetic and Geometry, Vol. I, Progress in Mathematics, 35 (Birkhäuser Boston, Boston, MA, 1983), 327–352.Google Scholar
[Ri1] [Ri1], ‘Prime and composite polynomials’, Trans. Amer. Math. Soc. 23 (1922), 51–66.Google Scholar
[Ri2] [Ri2], ‘Permutable rational functions’, Trans. Amer. Math. Soc. 25 (1923), 399–448.Google Scholar
[Si] [Si], Moduli Spaces and Arithmetic Dynamics, CRM Monograph Series, 30 (American Mathematical Society, Providence, RI, 2012).Google Scholar
Cité par Sources :
