Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2013_1,
     author = {PETER SCHOLZE},
     title = {$p${-ADIC} {HODGE} {THEORY} {FOR} {RIGID-ANALYTIC} {VARIETIES}},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {1},
     year = {2013},
     doi = {10.1017/fmp.2013.1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2013.1/}
}
                      
                      
                    PETER SCHOLZE. $p$-ADIC HODGE THEORY FOR RIGID-ANALYTIC VARIETIES. Forum of Mathematics, Pi, Tome 1 (2013). doi: 10.1017/fmp.2013.1
and , ‘Comparison isomorphisms for smooth formal schemes’, J. Inst. Math. Jussieu 12(1) (2013), 77–151.Google Scholar
, ‘ -adic periods and derived de Rham cohomology’, J. Amer. Math. Soc. 25 (2012), 715–738.Google Scholar
, and , Non-Archimedean Analysis: a Systematic Approach to Rigid Analytic Geometry, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 261 (Springer, Berlin, 1984).Google Scholar
, ‘Représentations -adiques cristallines et de de Rham dans le cas relatif’, Mém. Soc. Math. Fr. (N.S.) 112 (2008), vi+159.Google Scholar
, ‘Espaces de Banach de dimension finie’, J. Inst. Math. Jussieu 1(3) (2002), 331–439.Google Scholar
, ‘Almost étale extensions’, Astérisque 279 (2002), 185–270, cohomologies -adiques et applications arithmétiques, II.Google Scholar
and , Foundations of Almost Ring Theory. http://math.univ-lille1.fr/~ramero/hodge.pdf.Google Scholar
and , Almost Ring Theory, Lecture Notes in Mathematics, 1800 (Springer, Berlin, 2003).Google Scholar
, Étale Cohomology of Rigid Analytic Varieties and Adic Spaces, Aspects of Mathematics, E30 (Friedr. Vieweg & Sohn, Braunschweig, 1996).Google Scholar
, ‘Étale fundamental groups of non-Archimedean analytic spaces’, Compositio Math. 97(1–2) (1995), 89–118, special issue in honour of Frans Oort.Google Scholar
and , ‘Étale cohomology of rigid analytic spaces’, Doc. Math. 1(01) (1996), 1–56 (electronic).Google Scholar
, ‘Der Endlichkeitssatz für eigentliche Abbildungen in der nichtarchimedischen Funktionentheorie’, Invent. Math. 2 (1967), 191–214.Google Scholar
, ‘Über eigentliche Familien algebraischer Varietäten über affinoiden Räumen’, Schr. Math. Inst. Univ. Münster (2) (Heft 7) (1974), iv+72.Google Scholar
, ‘From Tate’s elliptic curve to abeloid varieties’, Pure Appl. Math. Q. 5(4, Special Issue: In honor of John Tate. Part 1), (2009), 1385–1427.Google Scholar
and , Period Spaces for p-divisible Groups, Annals of Mathematics Studies, 141 (Princeton University Press, Princeton, NJ, 1996).Google Scholar
, ‘The cohomology of local systems on -adically uniformized varieties’, Math. Ann. 293(4) (1992), 623–650.Google Scholar
, ‘Perfectoid spaces’, Publ. Math. Inst. Hautes Études Sci. 116(1) (2012), 245–313.Google Scholar
, ‘ -divisible groups’, Proc. Conf. Local Fields (Driebergen, 1966) (Springer, Berlin, 1967), 158–183.Google Scholar
, ‘On local properties of non-Archimedean analytic spaces’, Math. Ann. 318(3) (2000), 585–607.Google Scholar
Cité par Sources :
