$p$-ADIC HODGE THEORY FOR RIGID-ANALYTIC VARIETIES
Forum of Mathematics, Pi, Tome 1 (2013)

Voir la notice de l'article provenant de la source Cambridge University Press

We give proofs of de Rham comparison isomorphisms for rigid-analytic varieties, with coefficients and in families. This relies on the theory of perfectoid spaces. Another new ingredient is the pro-étale site, which makes all constructions completely functorial.
@article{10_1017_fmp_2013_1,
     author = {PETER SCHOLZE},
     title = {$p${-ADIC} {HODGE} {THEORY} {FOR} {RIGID-ANALYTIC} {VARIETIES}},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {1},
     year = {2013},
     doi = {10.1017/fmp.2013.1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2013.1/}
}
TY  - JOUR
AU  - PETER SCHOLZE
TI  - $p$-ADIC HODGE THEORY FOR RIGID-ANALYTIC VARIETIES
JO  - Forum of Mathematics, Pi
PY  - 2013
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2013.1/
DO  - 10.1017/fmp.2013.1
LA  - en
ID  - 10_1017_fmp_2013_1
ER  - 
%0 Journal Article
%A PETER SCHOLZE
%T $p$-ADIC HODGE THEORY FOR RIGID-ANALYTIC VARIETIES
%J Forum of Mathematics, Pi
%D 2013
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2013.1/
%R 10.1017/fmp.2013.1
%G en
%F 10_1017_fmp_2013_1
PETER SCHOLZE. $p$-ADIC HODGE THEORY FOR RIGID-ANALYTIC VARIETIES. Forum of Mathematics, Pi, Tome 1 (2013). doi: 10.1017/fmp.2013.1

Andreatta, F. and Iovita, A., ‘Comparison isomorphisms for smooth formal schemes’, J. Inst. Math. Jussieu 12(1) (2013), 77–151.Google Scholar

Beilinson, A., ‘ -adic periods and derived de Rham cohomology’, J. Amer. Math. Soc. 25 (2012), 715–738.Google Scholar

Bosch, S., Güntzer, U. and Remmert, R., Non-Archimedean Analysis: a Systematic Approach to Rigid Analytic Geometry, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 261 (Springer, Berlin, 1984).Google Scholar

Brinon, O., ‘Représentations -adiques cristallines et de de Rham dans le cas relatif’, Mém. Soc. Math. Fr. (N.S.) 112 (2008), vi+159.Google Scholar

Colmez, P., ‘Espaces de Banach de dimension finie’, J. Inst. Math. Jussieu 1(3) (2002), 331–439.Google Scholar

Faltings, G., ‘Almost étale extensions’, Astérisque 279 (2002), 185–270, cohomologies -adiques et applications arithmétiques, II.Google Scholar

Gabber, O. and Ramero, L., Foundations of Almost Ring Theory. http://math.univ-lille1.fr/~ramero/hodge.pdf.Google Scholar

Gabber, O. and Ramero, L., Almost Ring Theory, Lecture Notes in Mathematics, 1800 (Springer, Berlin, 2003).Google Scholar

Huber, R., Étale Cohomology of Rigid Analytic Varieties and Adic Spaces, Aspects of Mathematics, E30 (Friedr. Vieweg & Sohn, Braunschweig, 1996).Google Scholar

De Jong, A. J., ‘Étale fundamental groups of non-Archimedean analytic spaces’, Compositio Math. 97(1–2) (1995), 89–118, special issue in honour of Frans Oort.Google Scholar

De Jong, J. and Van Der Put, M., ‘Étale cohomology of rigid analytic spaces’, Doc. Math. 1(01) (1996), 1–56 (electronic).Google Scholar

Kiehl, R., ‘Der Endlichkeitssatz für eigentliche Abbildungen in der nichtarchimedischen Funktionentheorie’, Invent. Math. 2 (1967), 191–214.Google Scholar

Köpf, U., ‘Über eigentliche Familien algebraischer Varietäten über affinoiden Räumen’, Schr. Math. Inst. Univ. Münster (2) (Heft 7) (1974), iv+72.Google Scholar

Lütkebohmert, W., ‘From Tate’s elliptic curve to abeloid varieties’, Pure Appl. Math. Q. 5(4, Special Issue: In honor of John Tate. Part 1),  (2009), 1385–1427.Google Scholar

Rapoport, M. and Zink, T., Period Spaces for p-divisible Groups, Annals of Mathematics Studies, 141 (Princeton University Press, Princeton, NJ, 1996).Google Scholar

Schneider, P., ‘The cohomology of local systems on -adically uniformized varieties’, Math. Ann. 293(4) (1992), 623–650.Google Scholar

Scholze, P., ‘Perfectoid spaces’, Publ. Math. Inst. Hautes Études Sci. 116(1) (2012), 245–313.Google Scholar

Tate, J. T., ‘ -divisible groups’, Proc. Conf. Local Fields (Driebergen, 1966) (Springer, Berlin, 1967), 158–183.Google Scholar

Temkin, M., ‘On local properties of non-Archimedean analytic spaces’, Math. Ann. 318(3) (2000), 585–607.Google Scholar

Cité par Sources :