Number theory/Combinatorics
Symbolic summation methods and congruences involving harmonic numbers
[Méthodes de sommation symbolique et congruences impliquant les nombres harmoniques]
Comptes Rendus. Mathématique, Tome 357 (2019) no. 10, pp. 756-765.

Voir la notice de l'article provenant de la source Numdam

In this paper, we establish some combinatorial identities involving harmonic numbers via the package Sigma, by which we confirm some conjectural congruences of Z.-W. Sun. For example, for any prime p>3, we have

k=0(p3)/2(2kk)2(2k+1)16kHk(2)7Bp3(modp),
k=1p1(2kk)2k16kH2k(2)Bp3(modp),
k=1(p1)/2(2kk)2k16k(H2kHk)73pBp3(modp2),
where Hn(m)=k=1n1/km (mZ+={1,2,}) is the n-th harmonic numbers of order m and Bn is the n-th Bernoulli number.

Nous montrons ici, à l'aide du progiciel Sigma, quelques identités combinatoires faisant intervenir les nombres harmoniques. Nous établissons ainsi des congruences conjecturées par Z.-W. Sun. Par exemple, pour p>3 premier, on a

k=0(p3)/2(2kk)2(2k+1)16kHk(2)7Bp3(modp),
k=1p1(2kk)2k16kH2k(2)Bp3(modp),
k=1(p1)/2(2kk)2k16k(H2kHk)73pBp3(modp2),
Hn(m)=k=1n1/km (m{1,2,}) désigne le n-ième nombre harmonique d'ordre m et Bn est le n-ième nombre de Bernoulli.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2019.10.005

Mao, Guo-Shuai 1 ; Wang, Chen 2 ; Wang, Jie 2

1 Department of Mathematics, Nanjing University of Information Science and Technology, Nanjing 210044, People's Republic of China
2 Department of Mathematics, Nanjing University, Nanjing 210093, People's Republic of China
@article{CRMATH_2019__357_10_756_0,
     author = {Mao, Guo-Shuai and Wang, Chen and Wang, Jie},
     title = {Symbolic summation methods and congruences involving harmonic numbers},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {756--765},
     publisher = {Elsevier},
     volume = {357},
     number = {10},
     year = {2019},
     doi = {10.1016/j.crma.2019.10.005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2019.10.005/}
}
TY  - JOUR
AU  - Mao, Guo-Shuai
AU  - Wang, Chen
AU  - Wang, Jie
TI  - Symbolic summation methods and congruences involving harmonic numbers
JO  - Comptes Rendus. Mathématique
PY  - 2019
SP  - 756
EP  - 765
VL  - 357
IS  - 10
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2019.10.005/
DO  - 10.1016/j.crma.2019.10.005
LA  - en
ID  - CRMATH_2019__357_10_756_0
ER  - 
%0 Journal Article
%A Mao, Guo-Shuai
%A Wang, Chen
%A Wang, Jie
%T Symbolic summation methods and congruences involving harmonic numbers
%J Comptes Rendus. Mathématique
%D 2019
%P 756-765
%V 357
%N 10
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2019.10.005/
%R 10.1016/j.crma.2019.10.005
%G en
%F CRMATH_2019__357_10_756_0
Mao, Guo-Shuai; Wang, Chen; Wang, Jie. Symbolic summation methods and congruences involving harmonic numbers. Comptes Rendus. Mathématique, Tome 357 (2019) no. 10, pp. 756-765. doi : 10.1016/j.crma.2019.10.005. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2019.10.005/

[1] Cao, H.-Q.; Pan, H. Note on some congruences of Lehmer, J. Number Theory, Volume 129 (2009) no. 8, pp. 1813-1819

[2] Hessami Pilehrood, Kh.; Hessami Pilehrood, T.; Tauraso, R. New properties of multiple harmonic sums modulo p and p-analogues of Leshchiner's series, Trans. Amer. Math. Soc., Volume 366 (2014) no. 6, pp. 3131-3159

[3] Mao, G.-S.; Sun, Z.-W. Two congruences involving harmonic numbers with applications, Int. J. Number Theory, Volume 12 (2016) no. 2, pp. 527-539

[4] Mao, G.-S. Proof of two conjectural supercongruences involving Catalan–Larcombe–French numbers, J. Number Theory, Volume 179 (2017), pp. 88-96

[5] Mao, G.-S. Proof of some congruences conjectured by Z.-W. Sun, Int. J. Number Theory, Volume 13 (2017), pp. 1983-1993

[6] Osburn, R.; Schneider, C. Gaussian hypergeometric series and supercongruences, Math. Comput., Volume 78 (2009), pp. 275-292

[7] Schneider, C. Symbolic summation assists combinatorics, Sémin. Lothar. Comb., Volume 56 (2007)

[8] Sun, Z.-H. Congruences concerning Bernoulli numbers and Bernoulli polynomials, Discrete Appl. Math., Volume 105 (2000), pp. 193-223

[9] Sun, Z.-H. Congruences involving Bernoulli and Euler numbers, J. Number Theory, Volume 128 (2008) no. 2, pp. 280-312

[10] Sun, Z.-W. Super congruences and Euler numbers, Sci. China Math., Volume 54 (2011), pp. 2509-2535

[11] Sun, Z.-W. p-adic congruences motivated by series, J. Number Theory, Volume 134 (2014), pp. 181-196

[12] Sun, Z.-W. A new series for π3 and related congruences, Internat. J. Math., Volume 26 (2015) no. 8

[13] Sun, Z.-W.; Zhao, L.-L. Arithmetic theory of harmonic numbers (II), Colloq. Math., Volume 130 (2013) no. 1, pp. 67-78

[14] Tauraso, R. Supercongruences related to F23(1) involving harmonic numbers, Int. J. Number Theory, Volume 14 (2018) no. 4, pp. 1093-1109

[15] Wolstenholme, J. On certain properties of prime numbers, Q. J. Math., Volume 5 (1862), pp. 35-39

[16] Zhao, L.-L.; Sun, Z.-W. Some curious congruences modulo primes, J. Number Theory, Volume 130 (2010) no. 4, pp. 930-935

Cité par Sources :