Voir la notice de l'article provenant de la source Numdam
In this paper, we establish some combinatorial identities involving harmonic numbers via the package Sigma, by which we confirm some conjectural congruences of Z.-W. Sun. For example, for any prime , we have
Nous montrons ici, à l'aide du progiciel Sigma, quelques identités combinatoires faisant intervenir les nombres harmoniques. Nous établissons ainsi des congruences conjecturées par Z.-W. Sun. Par exemple, pour premier, on a
Mao, Guo-Shuai 1 ; Wang, Chen 2 ; Wang, Jie 2
@article{CRMATH_2019__357_10_756_0, author = {Mao, Guo-Shuai and Wang, Chen and Wang, Jie}, title = {Symbolic summation methods and congruences involving harmonic numbers}, journal = {Comptes Rendus. Math\'ematique}, pages = {756--765}, publisher = {Elsevier}, volume = {357}, number = {10}, year = {2019}, doi = {10.1016/j.crma.2019.10.005}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2019.10.005/} }
TY - JOUR AU - Mao, Guo-Shuai AU - Wang, Chen AU - Wang, Jie TI - Symbolic summation methods and congruences involving harmonic numbers JO - Comptes Rendus. Mathématique PY - 2019 SP - 756 EP - 765 VL - 357 IS - 10 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2019.10.005/ DO - 10.1016/j.crma.2019.10.005 LA - en ID - CRMATH_2019__357_10_756_0 ER -
%0 Journal Article %A Mao, Guo-Shuai %A Wang, Chen %A Wang, Jie %T Symbolic summation methods and congruences involving harmonic numbers %J Comptes Rendus. Mathématique %D 2019 %P 756-765 %V 357 %N 10 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2019.10.005/ %R 10.1016/j.crma.2019.10.005 %G en %F CRMATH_2019__357_10_756_0
Mao, Guo-Shuai; Wang, Chen; Wang, Jie. Symbolic summation methods and congruences involving harmonic numbers. Comptes Rendus. Mathématique, Tome 357 (2019) no. 10, pp. 756-765. doi : 10.1016/j.crma.2019.10.005. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2019.10.005/
[1] Note on some congruences of Lehmer, J. Number Theory, Volume 129 (2009) no. 8, pp. 1813-1819
[2] New properties of multiple harmonic sums modulo p and p-analogues of Leshchiner's series, Trans. Amer. Math. Soc., Volume 366 (2014) no. 6, pp. 3131-3159
[3] Two congruences involving harmonic numbers with applications, Int. J. Number Theory, Volume 12 (2016) no. 2, pp. 527-539
[4] Proof of two conjectural supercongruences involving Catalan–Larcombe–French numbers, J. Number Theory, Volume 179 (2017), pp. 88-96
[5] Proof of some congruences conjectured by Z.-W. Sun, Int. J. Number Theory, Volume 13 (2017), pp. 1983-1993
[6] Gaussian hypergeometric series and supercongruences, Math. Comput., Volume 78 (2009), pp. 275-292
[7] Symbolic summation assists combinatorics, Sémin. Lothar. Comb., Volume 56 (2007)
[8] Congruences concerning Bernoulli numbers and Bernoulli polynomials, Discrete Appl. Math., Volume 105 (2000), pp. 193-223
[9] Congruences involving Bernoulli and Euler numbers, J. Number Theory, Volume 128 (2008) no. 2, pp. 280-312
[10] Super congruences and Euler numbers, Sci. China Math., Volume 54 (2011), pp. 2509-2535
[11] p-adic congruences motivated by series, J. Number Theory, Volume 134 (2014), pp. 181-196
[12] A new series for and related congruences, Internat. J. Math., Volume 26 (2015) no. 8
[13] Arithmetic theory of harmonic numbers (II), Colloq. Math., Volume 130 (2013) no. 1, pp. 67-78
[14] Supercongruences related to involving harmonic numbers, Int. J. Number Theory, Volume 14 (2018) no. 4, pp. 1093-1109
[15] On certain properties of prime numbers, Q. J. Math., Volume 5 (1862), pp. 35-39
[16] Some curious congruences modulo primes, J. Number Theory, Volume 130 (2010) no. 4, pp. 930-935
Cité par Sources :