[Existence d'ondes solitaires multiples avec distances relatives logarithmiques de Schrödinger non linéaires]
We construct 2-solitary wave solutions with logarithmic distance to the nonlinear Schrödinger equation,
In the integrable case ( and ), the existence of such solutions is known by inverse scattering (E. Olmedilla, Multiple pole solutions of the nonlinear Schrödinger equation, Physica D 25 (1987) 330–346; T. Zakharov, A.B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Sov. Phys. JETP 34 (1972) 62–69). The mass-critical case exhibits a specific behavior related to blow-up, previously studied in Y. Martel, P. Raphaël (Strongly interacting blow up bubbles for the mass critical NLS, Ann. Sci. Éc. Norm. Supér. 51 (2018) 701–737).
On construit des solutions au problème de la propagation de deux ondes solitaires avec distance logarithmique de Schrödinger non linéaire,
Dans le cas intégrable ( et ), l'existence d'une telle solution est connue par la méthode dite d'inverse scaterring (E. Olmedilla, Multiple pole solutions of the nonlinear Schrödinger equation, Physica D 25 (1987) 330–346 ; T. Zakharov, A.B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Sov. Phys. JETP 34 (1972) 62–69). Le cas d'une masse critique introduit un comportement spécifique lié à l'explosion, qui a été étudié précédemment par Y. Martel et P. Raphaël (Strongly interacting blow up bubbles for the mass critical NLS, Ann. Sci. Éc. Norm. Supér. 51 (2018) 701–737).
Accepté le :
Publié le :
Nguyễn, Tiến Vinh 1
@article{CRMATH_2019__357_1_13_0,
author = {Nguyễn, Tiến Vinh},
title = {Existence of multi-solitary waves with logarithmic relative distances for the {NLS} equation},
journal = {Comptes Rendus. Math\'ematique},
pages = {13--58},
year = {2019},
publisher = {Elsevier},
volume = {357},
number = {1},
doi = {10.1016/j.crma.2018.11.012},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2018.11.012/}
}
TY - JOUR AU - Nguyễn, Tiến Vinh TI - Existence of multi-solitary waves with logarithmic relative distances for the NLS equation JO - Comptes Rendus. Mathématique PY - 2019 SP - 13 EP - 58 VL - 357 IS - 1 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2018.11.012/ DO - 10.1016/j.crma.2018.11.012 LA - en ID - CRMATH_2019__357_1_13_0 ER -
%0 Journal Article %A Nguyễn, Tiến Vinh %T Existence of multi-solitary waves with logarithmic relative distances for the NLS equation %J Comptes Rendus. Mathématique %D 2019 %P 13-58 %V 357 %N 1 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2018.11.012/ %R 10.1016/j.crma.2018.11.012 %G en %F CRMATH_2019__357_1_13_0
Nguyễn, Tiến Vinh. Existence of multi-solitary waves with logarithmic relative distances for the NLS equation. Comptes Rendus. Mathématique, Tome 357 (2019) no. 1, pp. 13-58. doi: 10.1016/j.crma.2018.11.012
Cité par Sources :