Partial differential equations
Existence of multi-solitary waves with logarithmic relative distances for the NLS equation
[Existence d'ondes solitaires multiples avec distances relatives logarithmiques de Schrödinger non linéaires]
Comptes Rendus. Mathématique, Tome 357 (2019) no. 1, pp. 13-58 Cet article a éte moissonné depuis la source Numdam

Voir la notice de l'article

We construct 2-solitary wave solutions with logarithmic distance to the nonlinear Schrödinger equation,

itu+Δu+|u|p1u=0,tR,xRd,
in mass-subcritical cases 1<p<1+4d and mass-supercritical cases 1+4d<p<d+2d2, i.e. solutions u(t) satisfying
u(t)eiγ(t)k=12Q(xk(t))H10
and
|x1(t)x2(t)|2logt,ast+,
where Q is the ground state. The logarithmic distance is related to strong interactions between solitary waves.

In the integrable case (d=1 and p=3), the existence of such solutions is known by inverse scattering (E. Olmedilla, Multiple pole solutions of the nonlinear Schrödinger equation, Physica D 25 (1987) 330–346; T. Zakharov, A.B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Sov. Phys. JETP 34 (1972) 62–69). The mass-critical case p=1+4d exhibits a specific behavior related to blow-up, previously studied in Y. Martel, P. Raphaël (Strongly interacting blow up bubbles for the mass critical NLS, Ann. Sci. Éc. Norm. Supér. 51 (2018) 701–737).

On construit des solutions au problème de la propagation de deux ondes solitaires avec distance logarithmique de Schrödinger non linéaire,

itu+Δu+|u|p1u=0,tR,xRd,
dans le cas d'une masse souscritique 1<p<1+4d et d'une masse surcritique 1+4d<p<d+2d2, autrement dit, u(t), qui satisfait
u(t)eiγ(t)k=12Q(xk(t))H10
et
|x1(t)x2(t)|2log(t)quandt+,
Q est l'état fondamental. La distance logarithmique est liée à l'interaction forte entre ondes solitaires.

Dans le cas intégrable (d=1 et p=3), l'existence d'une telle solution est connue par la méthode dite d'inverse scaterring (E. Olmedilla, Multiple pole solutions of the nonlinear Schrödinger equation, Physica D 25 (1987) 330–346 ; T. Zakharov, A.B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Sov. Phys. JETP 34 (1972) 62–69). Le cas d'une masse critique p=1+4d introduit un comportement spécifique lié à l'explosion, qui a été étudié précédemment par Y. Martel et P. Raphaël (Strongly interacting blow up bubbles for the mass critical NLS, Ann. Sci. Éc. Norm. Supér. 51 (2018) 701–737).

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2018.11.012

Nguyễn, Tiến Vinh 1

1 CMLS, École polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau, France
@article{CRMATH_2019__357_1_13_0,
     author = {Nguyễn, Tiến Vinh},
     title = {Existence of multi-solitary waves with logarithmic relative distances for the {NLS} equation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {13--58},
     year = {2019},
     publisher = {Elsevier},
     volume = {357},
     number = {1},
     doi = {10.1016/j.crma.2018.11.012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2018.11.012/}
}
TY  - JOUR
AU  - Nguyễn, Tiến Vinh
TI  - Existence of multi-solitary waves with logarithmic relative distances for the NLS equation
JO  - Comptes Rendus. Mathématique
PY  - 2019
SP  - 13
EP  - 58
VL  - 357
IS  - 1
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2018.11.012/
DO  - 10.1016/j.crma.2018.11.012
LA  - en
ID  - CRMATH_2019__357_1_13_0
ER  - 
%0 Journal Article
%A Nguyễn, Tiến Vinh
%T Existence of multi-solitary waves with logarithmic relative distances for the NLS equation
%J Comptes Rendus. Mathématique
%D 2019
%P 13-58
%V 357
%N 1
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2018.11.012/
%R 10.1016/j.crma.2018.11.012
%G en
%F CRMATH_2019__357_1_13_0
Nguyễn, Tiến Vinh. Existence of multi-solitary waves with logarithmic relative distances for the NLS equation. Comptes Rendus. Mathématique, Tome 357 (2019) no. 1, pp. 13-58. doi: 10.1016/j.crma.2018.11.012

Cité par Sources :