Differential geometry
Metrics on a closed surface of genus two which maximize the first eigenvalue of the Laplacian
[Métriques sur une surface fermée de genre deux qui maximisent la première valeur propre du laplacien]
Comptes Rendus. Mathématique, Tome 357 (2019) no. 1, pp. 84-98.

Voir la notice de l'article provenant de la source Numdam

In this paper, we settle in the affirmative the Jakobson–Levitin–Nadirashvili–Nigam–Polterovich conjecture, stating that a certain singular metric on the Bolza surface, with area normalized, should maximize the first eigenvalue of the Laplacian.

Dans cette Note, nous donnons une réponse positive à la conjecture de Jakobson–Levitin–Nadirashvili–Nigam–Polterovich, en montrant qu'une certaine métrique singulière sur la surface de Bolza, d'aire normalisée, maximise la première valeur propre du laplacien.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2018.11.008

Nayatani, Shin 1 ; Shoda, Toshihiro 2

1 Graduate School of Mathematics, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
2 Faculty of Education, Saga University, Honjo-machi, Saga 840-8502, Japan
@article{CRMATH_2019__357_1_84_0,
     author = {Nayatani, Shin and Shoda, Toshihiro},
     title = {Metrics on a closed surface of genus two which maximize the first eigenvalue of the {Laplacian}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {84--98},
     publisher = {Elsevier},
     volume = {357},
     number = {1},
     year = {2019},
     doi = {10.1016/j.crma.2018.11.008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2018.11.008/}
}
TY  - JOUR
AU  - Nayatani, Shin
AU  - Shoda, Toshihiro
TI  - Metrics on a closed surface of genus two which maximize the first eigenvalue of the Laplacian
JO  - Comptes Rendus. Mathématique
PY  - 2019
SP  - 84
EP  - 98
VL  - 357
IS  - 1
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2018.11.008/
DO  - 10.1016/j.crma.2018.11.008
LA  - en
ID  - CRMATH_2019__357_1_84_0
ER  - 
%0 Journal Article
%A Nayatani, Shin
%A Shoda, Toshihiro
%T Metrics on a closed surface of genus two which maximize the first eigenvalue of the Laplacian
%J Comptes Rendus. Mathématique
%D 2019
%P 84-98
%V 357
%N 1
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2018.11.008/
%R 10.1016/j.crma.2018.11.008
%G en
%F CRMATH_2019__357_1_84_0
Nayatani, Shin; Shoda, Toshihiro. Metrics on a closed surface of genus two which maximize the first eigenvalue of the Laplacian. Comptes Rendus. Mathématique, Tome 357 (2019) no. 1, pp. 84-98. doi : 10.1016/j.crma.2018.11.008. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2018.11.008/

[1] Byrd, P.F.; Friedman, M.D. Handbook of Elliptic Integrals for Engineers and Scientists, Die Grundlehren der mathematischen Wissenschaften, vol. 67, Springer-Verlag, New York–Heidelberg, 1971

[2] Choe, J.; Soret, M. First eigenvalue of symmetric minimal surfaces in S3, Indiana Univ. Math. J., Volume 58 (2009), pp. 269-281

[3] Ejiri, N.; Kotani, M. Index and flat ends of minimal surfaces, Tokyo J. Math., Volume 16 (1993) no. 1, pp. 37-48

[4] Fischer-Colbrie, D. On complete minimal surfaces with finite Morse index in three-manifolds, Invent. Math., Volume 82 (1985) no. 1, pp. 121-132

[5] Heller, S.; Schmitt, N. Deformations of symmetric CMC surfaces in the 3-sphere, Exp. Math., Volume 24 (2015), pp. 65-75

[6] Hersch, J. Quatre propriétés isopérimétriques de membranes sphériques homogénes, C. R. Acad. Sci. Paris Ser. A–B, Volume 270 (1970), p. A1645-A1648

[7] Jakobson, D.; Levitin, M.; Nadirashvili, N.; Nigam, N.; Polterovich, I. How large can the first eigenvalue be on a surface of genus two?, Int. Math. Res. Not. IMRN, Volume 2005 (2005) no. 63, pp. 3967-3985

[8] Montiel, S.; Ros, A. Schrödinger operators associated to a holomorphic map, Berlin, 1990 (Lecture Notes in Mathematics), Volume vol. 1481, Springer, Berlin (1991), pp. 147-174

[9] Nadirashvili, N. Berger's isoperimetric problem and minimal immersions of surfaces, Geom. Funct. Anal., Volume 6 (1996) no. 5, pp. 877-897

[10] Nadirashvili, N.; Sire, Y. Conformal spectrum and harmonic maps, Mosc. Math. J., Volume 15 (2015) no. 1, pp. 123-140

[11] Nayatani, S. Lower bounds for the Morse index of complete minimal surfaces in Euclidean 3-space, Osaka J. Math., Volume 27 (1990) no. 2, pp. 453-464

[12] Nayatani, S. Morse index and Gauss maps of complete minimal surfaces in Euclidean 3-space, Comment. Math. Helv., Volume 68 (1993) no. 4, pp. 511-537

[13] Osserman, R. A Survey of Minimal Surfaces, Dover Publications, Inc., New York, 1986

[14] Petrides, R. Existence and regularity of maximal metrics for the first Laplace eigenvalue on surfaces, Geom. Funct. Anal., Volume 24 (2014) no. 4, pp. 1336-1376

[15] Schoen, R.M. Optimal Geometries on Surfaces, Colloquium at the Graduate, School of Mathematics, Nagoya University, December 2014 (2015)

[16] Yang, P.C.; Yau, S.T. Eigenvalues of the Laplacian of compact Riemann surfaces and minimal submanifolds, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), Volume 7 (1980) no. 1, pp. 55-63

Cité par Sources :

This work was supported by the Research Institute for Mathematical Sciences, a Joint Usage/Research Center located in Kyoto University.