Voir la notice de l'article provenant de la source Numdam
In this note, we give a characterization for the weighted log canonical thresholds of plurisubharmonic functions. As an application, we prove an inequality for weighted log canonical thresholds and Monge–Ampère masses.
Dans cette note, nous donnons une caractérisation des seuils log canoniques à poids de fonctions pluri-sous-harmoniques. En guise d'application, nous démontrons une inégalité pour les seuils log canoniques à poids et les masses de Monge–Ampère.
Hong, Nguyen Xuan 1
@article{CRMATH_2018__356_8_865_0, author = {Hong, Nguyen Xuan}, title = {A note on the weighted log canonical thresholds of plurisubharmonic functions}, journal = {Comptes Rendus. Math\'ematique}, pages = {865--869}, publisher = {Elsevier}, volume = {356}, number = {8}, year = {2018}, doi = {10.1016/j.crma.2018.06.003}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2018.06.003/} }
TY - JOUR AU - Hong, Nguyen Xuan TI - A note on the weighted log canonical thresholds of plurisubharmonic functions JO - Comptes Rendus. Mathématique PY - 2018 SP - 865 EP - 869 VL - 356 IS - 8 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2018.06.003/ DO - 10.1016/j.crma.2018.06.003 LA - en ID - CRMATH_2018__356_8_865_0 ER -
%0 Journal Article %A Hong, Nguyen Xuan %T A note on the weighted log canonical thresholds of plurisubharmonic functions %J Comptes Rendus. Mathématique %D 2018 %P 865-869 %V 356 %N 8 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2018.06.003/ %R 10.1016/j.crma.2018.06.003 %G en %F CRMATH_2018__356_8_865_0
Hong, Nguyen Xuan. A note on the weighted log canonical thresholds of plurisubharmonic functions. Comptes Rendus. Mathématique, Tome 356 (2018) no. 8, pp. 865-869. doi : 10.1016/j.crma.2018.06.003. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2018.06.003/
[1] Partial pluricomplex energy and integrability exponents of plurisubharmonic functions, Adv. Math., Volume 222 (2009), pp. 2036-2058
[2] A new capacity for plurisubharmonic functions, Acta Math., Volume 149 (1982), pp. 1-40
[3] The general definition of the complex Monge–Ampère operator, Ann. Inst. Fourier, Volume 54 (2004), pp. 159-179
[4] Monge–Ampère operators, Lelong numbers and intersection theory, Complex Analysis and Geometry, Univ. Ser. Math., Plenum Press, New York, 1993, pp. 115-193
[5] A sharp lower bound for the log canonical threshold, Acta Math., Volume 212 (2014), pp. 1-9
[6] Semi-continuity of complex singularity exponents and Kähler–Einstein metrics on Fano orbifolds, Ann. Sci. Éc. Norm. Supér. (4), Volume 34 (2001), pp. 525-556
[7] Degenerate complex Monge–Ampère equations, EMS Tracts in Mathematics, vol. 26, European Mathematical Society (EMS), Zürich, Switzerland, 2017 (xxiv+472 p.)
[8] The weighted log canonical threshold, C. R. Acad. Sci. Paris, Ser. I, Volume 352 (2014), pp. 283-288
[9] Log canonical thresholds and Monge–Ampère masses, Math. Ann., Volume 370 (2018), pp. 555-566
[10] Semi-continuity properties of weighted log canonical thresholds of toric plurisubharmonic functions, C. R. Acad. Sci. Paris, Ser. I, Volume 355 (2017), pp. 487-492
[11] Pluripotential Theory, Clarendon Press – Oxford University Press, Oxford Science Publications, New York, 1991
[12] On the extension of holomorphic functions, Math. Z., Volume 195 (1987), pp. 197-204
[13] Extremal cases for the log canonical threshold, C. R. Acad. Sci. Paris, Ser. I, Volume 353 (2015) no. 1, pp. 21-24
Cité par Sources :