Potential theory/Complex analysis
A note on the weighted log canonical thresholds of plurisubharmonic functions
[Une note sur les seuils log canoniques à poids de fonctions pluri-sous-harmoniques]
Comptes Rendus. Mathématique, Tome 356 (2018) no. 8, pp. 865-869.

Voir la notice de l'article provenant de la source Numdam

In this note, we give a characterization for the weighted log canonical thresholds of plurisubharmonic functions. As an application, we prove an inequality for weighted log canonical thresholds and Monge–Ampère masses.

Dans cette note, nous donnons une caractérisation des seuils log canoniques à poids de fonctions pluri-sous-harmoniques. En guise d'application, nous démontrons une inégalité pour les seuils log canoniques à poids et les masses de Monge–Ampère.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2018.06.003

Hong, Nguyen Xuan 1

1 Department of Mathematics, Hanoi National University of Education, 136 Xuan Thuy Street, Caugiay District, Hanoi, Vietnam
@article{CRMATH_2018__356_8_865_0,
     author = {Hong, Nguyen Xuan},
     title = {A note on the weighted log canonical thresholds of plurisubharmonic functions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {865--869},
     publisher = {Elsevier},
     volume = {356},
     number = {8},
     year = {2018},
     doi = {10.1016/j.crma.2018.06.003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2018.06.003/}
}
TY  - JOUR
AU  - Hong, Nguyen Xuan
TI  - A note on the weighted log canonical thresholds of plurisubharmonic functions
JO  - Comptes Rendus. Mathématique
PY  - 2018
SP  - 865
EP  - 869
VL  - 356
IS  - 8
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2018.06.003/
DO  - 10.1016/j.crma.2018.06.003
LA  - en
ID  - CRMATH_2018__356_8_865_0
ER  - 
%0 Journal Article
%A Hong, Nguyen Xuan
%T A note on the weighted log canonical thresholds of plurisubharmonic functions
%J Comptes Rendus. Mathématique
%D 2018
%P 865-869
%V 356
%N 8
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2018.06.003/
%R 10.1016/j.crma.2018.06.003
%G en
%F CRMATH_2018__356_8_865_0
Hong, Nguyen Xuan. A note on the weighted log canonical thresholds of plurisubharmonic functions. Comptes Rendus. Mathématique, Tome 356 (2018) no. 8, pp. 865-869. doi : 10.1016/j.crma.2018.06.003. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2018.06.003/

[1] Åhag, P.; Cegrell, U.; Kołodziej, S.; Hiep, P.H.; Zeriahi, A. Partial pluricomplex energy and integrability exponents of plurisubharmonic functions, Adv. Math., Volume 222 (2009), pp. 2036-2058

[2] Bedford, E.; Taylor, B.A. A new capacity for plurisubharmonic functions, Acta Math., Volume 149 (1982), pp. 1-40

[3] Cegrell, U. The general definition of the complex Monge–Ampère operator, Ann. Inst. Fourier, Volume 54 (2004), pp. 159-179

[4] Demailly, J.-P. Monge–Ampère operators, Lelong numbers and intersection theory, Complex Analysis and Geometry, Univ. Ser. Math., Plenum Press, New York, 1993, pp. 115-193

[5] Demailly, J.-P.; Hiep, P.H. A sharp lower bound for the log canonical threshold, Acta Math., Volume 212 (2014), pp. 1-9

[6] Demailly, J.-P.; Kollár, J. Semi-continuity of complex singularity exponents and Kähler–Einstein metrics on Fano orbifolds, Ann. Sci. Éc. Norm. Supér. (4), Volume 34 (2001), pp. 525-556

[7] Guedj, V.; Zeriahi, A. Degenerate complex Monge–Ampère equations, EMS Tracts in Mathematics, vol. 26, European Mathematical Society (EMS), Zürich, Switzerland, 2017 (xxiv+472 p.)

[8] Hiep, P.H. The weighted log canonical threshold, C. R. Acad. Sci. Paris, Ser. I, Volume 352 (2014), pp. 283-288

[9] Hiep, P.H. Log canonical thresholds and Monge–Ampère masses, Math. Ann., Volume 370 (2018), pp. 555-566

[10] Hong, N.X. Semi-continuity properties of weighted log canonical thresholds of toric plurisubharmonic functions, C. R. Acad. Sci. Paris, Ser. I, Volume 355 (2017), pp. 487-492

[11] Klimek, M. Pluripotential Theory, Clarendon Press – Oxford University Press, Oxford Science Publications, New York, 1991

[12] Ohsawa, T.; Takegoshi, K. On the extension of L2 holomorphic functions, Math. Z., Volume 195 (1987), pp. 197-204

[13] Rashkovskii, A. Extremal cases for the log canonical threshold, C. R. Acad. Sci. Paris, Ser. I, Volume 353 (2015) no. 1, pp. 21-24

Cité par Sources :