Voir la notice de l'article provenant de la source Numdam
In this paper, we study the following fractional Kirchhoff equations
Dans ce texte, nous étudions les équations de Kirchhoff fractionnaires suivantes :
Shao, Liuyang 1 ; Chen, Haibo 1
@article{CRMATH_2018__356_5_489_0, author = {Shao, Liuyang and Chen, Haibo}, title = {Existence and concentration result for a class of fractional {Kirchhoff} equations with {Hartree-type} nonlinearities and steep potential well}, journal = {Comptes Rendus. Math\'ematique}, pages = {489--497}, publisher = {Elsevier}, volume = {356}, number = {5}, year = {2018}, doi = {10.1016/j.crma.2018.03.008}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2018.03.008/} }
TY - JOUR AU - Shao, Liuyang AU - Chen, Haibo TI - Existence and concentration result for a class of fractional Kirchhoff equations with Hartree-type nonlinearities and steep potential well JO - Comptes Rendus. Mathématique PY - 2018 SP - 489 EP - 497 VL - 356 IS - 5 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2018.03.008/ DO - 10.1016/j.crma.2018.03.008 LA - en ID - CRMATH_2018__356_5_489_0 ER -
%0 Journal Article %A Shao, Liuyang %A Chen, Haibo %T Existence and concentration result for a class of fractional Kirchhoff equations with Hartree-type nonlinearities and steep potential well %J Comptes Rendus. Mathématique %D 2018 %P 489-497 %V 356 %N 5 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2018.03.008/ %R 10.1016/j.crma.2018.03.008 %G en %F CRMATH_2018__356_5_489_0
Shao, Liuyang; Chen, Haibo. Existence and concentration result for a class of fractional Kirchhoff equations with Hartree-type nonlinearities and steep potential well. Comptes Rendus. Mathématique, Tome 356 (2018) no. 5, pp. 489-497. doi : 10.1016/j.crma.2018.03.008. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2018.03.008/
[1] Mechanik, Teubener, Leipzig, 1983
[2] Nonlinear scalar field equations. I. Existence of a ground state, Arch. Ration. Mech. Anal., Volume 82 (1983), pp. 313-345
[3] On some questions in boundary value problems of mathematical physics, Rio de Janeiro, 1977 (North-Holland Mathematics Studies), Volume vol. 30 (1978), pp. 284-346
[4] A remark on least energy solutions in , Proc. Amer. Math. Soc., Volume 131 (2003), pp. 2399-2408
[5] Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity, Nonlinearity, Volume 26 (2013), pp. 479-494
[6] The concentration compactness principle in the calculus of variations: the locally compact case. Part 1, 2, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 1 (1984), pp. 109-145
[7] Analysis, Grad. Stud. Math., vol. 14, American Mathematical Society, 2001
[8] A note on Kirchhoff-type equations with Hartree-type nonlinearities, Nonlinear Anal., Volume 99 (2014), pp. 35-48
[9] Existence and multiplicity results for some superlinear elliptic problems on , Commun. Partial Differ. Equ., Volume 20 (1995), pp. 1725-1741
[10] Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., Volume 136 (2012), pp. 521-573
[11] Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal., Volume 195 (2010), pp. 455-467
[12] Existence and concentration of sign-changing solutions to Kirchhoff-type system with Hartree-type nonlinearity, J. Math. Anal. Appl., Volume 448 (2017), pp. 60-80
Cité par Sources :
☆ This work is partially supported by Natural Science Foundation of China 11671403, by the Fundamental Research Funds for the Central Universities of Central South University 2017zzts056.