Mathematical problems in mechanics
Motion of an incompressible solid with large deformations
[Solide incompressible en grande déformation]
Comptes Rendus. Mathématique, Tome 356 (2018) no. 3, pp. 345-350.

Voir la notice de l'article provenant de la source Numdam

We study the motion of a visco-elastic solid with large deformations. We prove the existence of a local-in-time motion and of a non-negative pressure, which is a measure reaction to the incompressibility condition.

On étudie le mouvement d'un solide viscoélastique incompressible en grande déformation. On démontre l'existence d'un mouvement local en temps et d'une pression positive qui est une mesure, réaction à la condition d'incompressibilité.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2018.01.016

Bonetti, Elena 1, 2 ; Frémond, Michel 3

1 Laboratorio Lagrange, Dipartimento di Matematica “Federigo Enriques”, Università di Milano, Via Saldini, 50, 20133 Milano, Italy
2 IMATI–CNR, Via Ferrata 1, 27100, Pavia, Italy
3 Laboratorio Lagrange, Dipartimento di Ingegneria Civile e Ingegneria Informatica, Università di Roma “Tor Vergata”, Via del Politecnico, 1, 00163 Roma, Italy
@article{CRMATH_2018__356_3_345_0,
     author = {Bonetti, Elena and Fr\'emond, Michel},
     title = {Motion of an incompressible solid with large deformations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {345--350},
     publisher = {Elsevier},
     volume = {356},
     number = {3},
     year = {2018},
     doi = {10.1016/j.crma.2018.01.016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2018.01.016/}
}
TY  - JOUR
AU  - Bonetti, Elena
AU  - Frémond, Michel
TI  - Motion of an incompressible solid with large deformations
JO  - Comptes Rendus. Mathématique
PY  - 2018
SP  - 345
EP  - 350
VL  - 356
IS  - 3
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2018.01.016/
DO  - 10.1016/j.crma.2018.01.016
LA  - en
ID  - CRMATH_2018__356_3_345_0
ER  - 
%0 Journal Article
%A Bonetti, Elena
%A Frémond, Michel
%T Motion of an incompressible solid with large deformations
%J Comptes Rendus. Mathématique
%D 2018
%P 345-350
%V 356
%N 3
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2018.01.016/
%R 10.1016/j.crma.2018.01.016
%G en
%F CRMATH_2018__356_3_345_0
Bonetti, Elena; Frémond, Michel. Motion of an incompressible solid with large deformations. Comptes Rendus. Mathématique, Tome 356 (2018) no. 3, pp. 345-350. doi : 10.1016/j.crma.2018.01.016. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2018.01.016/

[1] Bonetti, E.; Colli, P.; Frémond, M. The motion of a solid with large deformations, C. R. Acad. Sci. Paris, Ser. I, Volume 351 (2013), pp. 579-583

[2] Bonetti, E.; Colli, P.; Frémond, M. 2D motion with large deformations, Boll. UMI, Volume 7 (2014), pp. 19-44

[3] Bonetti, E.; Colli, P.; Frémond, M. The 3D motion of a solid with large deformations, C. R. Acad. Sci. Paris, Ser. I, Volume 352 (2014), pp. 183-187

[4] Bonetti, E.; Rocca, E.; Scala, R.; Schimperna, G. On the strongly damped wave equation with constraint, Commun. Partial Differ. Equ., Volume 42 (2017) no. 7, pp. 1042-1064

[5] Frémond, M. Collisions, Edizioni del Dipartimento di Ingegneria Civile dell'Università di Roma Tor Vergata, Roma, 2007 (ISBN: 978-88-6296-000-7)

[6] Frémond, M. Virtual Work and Shape Change in Solid Mechanics, Springer Ser. Solid Struct. Mech., vol. 7, Springer-Verlag, Berlin, Heidelberg, Germany, 2017

[7] Moreau, J.J. Principes extrémaux pour le problème de la naissance de la cavitation, J. Méc., Volume 5 (1966), pp. 439-470

Cité par Sources :