Voir la notice de l'article provenant de la source Numdam
Let be a polynomial of degree n and for any complex number α, let denote the polar derivative of with respect to α. In this paper, we present an integral inequality for the polar derivative of a polynomial. Our theorem includes as special cases several interesting generalisations and refinements of Erdöx–Lax theorem.
Soit un polynôme de degré n. Pour tout nombre complexe α, notons la dérivée polaire de relative à α. Dans cette Note, nous présentons une inégalité intégrale pour la dérivée polaire. Notre théorème contient comme cas particuliers plusieurs généralisations et raffinements intéressants du théorème d'Erdös et Lax.
Mir, Abdullah 1 ; Hussain, Imtiaz 1
@article{CRMATH_2017__355_10_1055_0, author = {Mir, Abdullah and Hussain, Imtiaz}, title = {On the {Erd\"os{\textendash}Lax} inequality concerning polynomials}, journal = {Comptes Rendus. Math\'ematique}, pages = {1055--1062}, publisher = {Elsevier}, volume = {355}, number = {10}, year = {2017}, doi = {10.1016/j.crma.2017.09.017}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2017.09.017/} }
TY - JOUR AU - Mir, Abdullah AU - Hussain, Imtiaz TI - On the Erdös–Lax inequality concerning polynomials JO - Comptes Rendus. Mathématique PY - 2017 SP - 1055 EP - 1062 VL - 355 IS - 10 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2017.09.017/ DO - 10.1016/j.crma.2017.09.017 LA - en ID - CRMATH_2017__355_10_1055_0 ER -
%0 Journal Article %A Mir, Abdullah %A Hussain, Imtiaz %T On the Erdös–Lax inequality concerning polynomials %J Comptes Rendus. Mathématique %D 2017 %P 1055-1062 %V 355 %N 10 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2017.09.017/ %R 10.1016/j.crma.2017.09.017 %G en %F CRMATH_2017__355_10_1055_0
Mir, Abdullah; Hussain, Imtiaz. On the Erdös–Lax inequality concerning polynomials. Comptes Rendus. Mathématique, Tome 355 (2017) no. 10, pp. 1055-1062. doi : 10.1016/j.crma.2017.09.017. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2017.09.017/
[1] On integral inequalities for trigonometric polynomials and their derivatives, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 45 (1981), pp. 3-22
[2] Inequalities for the polar derivative of a polynomial, J. Approx. Theory, Volume 55 (1988), pp. 183-193
[3] Inequalities for a polynomial and its derivative, J. Approx. Theory, Volume 54 (1988), pp. 306-313
[4] On an inequality concerning the polar derivative of a polynomial, Proc. Indian Acad. Sci. Math. Sci., Volume 117 (2003), pp. 349-357
[5] Some Zygmund type inequalities for polynomials, J. Math. Anal. Appl., Volume 289 (2004), pp. 14-29
[6] Inequalities concerning polynomials in the complex domain, Nederl. Akad. Wetnesch Proc., Volume 50 (1947), pp. 1265-1272
[7] Proof of a conjecture of P. Erdös on the derivative of a polynomial, Bull. Amer. Math. Soc., Volume 50 (1944), pp. 509-513
[8] Inequalities for the polar derivative of a polynomial, Complex Anal. Oper. Theory, Volume 6 (2012), pp. 1199-1209
[9] Topics in Polynomials, Extremal Problems, Inequalities, Zeros, World Scientific, Singapore, 1994
[10] Some integral inequalities for the polar derivative of a polynomial, Anal. Theory Appl., Volume 4 (2011), pp. 340-350
[11] inequalities for polynomials, J. Approx. Theory, Volume 53 (1988), pp. 26-32
[12] Analytic Theory of Polynomials, Oxford University Press Inc., New York, 2002
[13] inequalities for the polar derivative of a polynomial, J. Inequal. Pure Appl. Math., Volume 9 (2008) no. 4 (Art. 103, 10 p)
[14] On the polar derivative of a polynomial, Bull. Iran. Math. Soc., Volume 40 (2014), pp. 967-976
[15] A remark on conjugate series, Proc. Lond. Math. Soc., Volume 34 (1932), pp. 392-400
Cité par Sources :