Complex analysis
On the Erdös–Lax inequality concerning polynomials
[Sur l'inégalité d'Erdös–Lax concernant les polynômes]
Comptes Rendus. Mathématique, Tome 355 (2017) no. 10, pp. 1055-1062.

Voir la notice de l'article provenant de la source Numdam

Let P(z) be a polynomial of degree n and for any complex number α, let DαP(z):=nP(z)+(αz)P(z) denote the polar derivative of P(z) with respect to α. In this paper, we present an integral inequality for the polar derivative of a polynomial. Our theorem includes as special cases several interesting generalisations and refinements of Erdöx–Lax theorem.

Soit P(z) un polynôme de degré n. Pour tout nombre complexe α, notons DαP(z):=nP(z)+(αz)P(z) la dérivée polaire de P(z) relative à α. Dans cette Note, nous présentons une inégalité intégrale pour la dérivée polaire. Notre théorème contient comme cas particuliers plusieurs généralisations et raffinements intéressants du théorème d'Erdös et Lax.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2017.09.017

Mir, Abdullah 1 ; Hussain, Imtiaz 1

1 Department of Mathematics, University of Kashmir, Srinagar, 190006, India
@article{CRMATH_2017__355_10_1055_0,
     author = {Mir, Abdullah and Hussain, Imtiaz},
     title = {On the {Erd\"os{\textendash}Lax} inequality concerning polynomials},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1055--1062},
     publisher = {Elsevier},
     volume = {355},
     number = {10},
     year = {2017},
     doi = {10.1016/j.crma.2017.09.017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2017.09.017/}
}
TY  - JOUR
AU  - Mir, Abdullah
AU  - Hussain, Imtiaz
TI  - On the Erdös–Lax inequality concerning polynomials
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 1055
EP  - 1062
VL  - 355
IS  - 10
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2017.09.017/
DO  - 10.1016/j.crma.2017.09.017
LA  - en
ID  - CRMATH_2017__355_10_1055_0
ER  - 
%0 Journal Article
%A Mir, Abdullah
%A Hussain, Imtiaz
%T On the Erdös–Lax inequality concerning polynomials
%J Comptes Rendus. Mathématique
%D 2017
%P 1055-1062
%V 355
%N 10
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2017.09.017/
%R 10.1016/j.crma.2017.09.017
%G en
%F CRMATH_2017__355_10_1055_0
Mir, Abdullah; Hussain, Imtiaz. On the Erdös–Lax inequality concerning polynomials. Comptes Rendus. Mathématique, Tome 355 (2017) no. 10, pp. 1055-1062. doi : 10.1016/j.crma.2017.09.017. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2017.09.017/

[1] Arestov, V.V. On integral inequalities for trigonometric polynomials and their derivatives, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 45 (1981), pp. 3-22

[2] Aziz, A. Inequalities for the polar derivative of a polynomial, J. Approx. Theory, Volume 55 (1988), pp. 183-193

[3] Aziz, A.; Dawood, Q.M. Inequalities for a polynomial and its derivative, J. Approx. Theory, Volume 54 (1988), pp. 306-313

[4] Aziz, A.; Rather, N.A. On an inequality concerning the polar derivative of a polynomial, Proc. Indian Acad. Sci. Math. Sci., Volume 117 (2003), pp. 349-357

[5] Aziz, A.; Rather, N.A. Some Zygmund type Lp inequalities for polynomials, J. Math. Anal. Appl., Volume 289 (2004), pp. 14-29

[6] de Bruijn, N.G. Inequalities concerning polynomials in the complex domain, Nederl. Akad. Wetnesch Proc., Volume 50 (1947), pp. 1265-1272

[7] Lax, P.D. Proof of a conjecture of P. Erdös on the derivative of a polynomial, Bull. Amer. Math. Soc., Volume 50 (1944), pp. 509-513

[8] Liman, A.; Mohapatra, R.N.; Shah, W.M. Inequalities for the polar derivative of a polynomial, Complex Anal. Oper. Theory, Volume 6 (2012), pp. 1199-1209

[9] Milovanović, G.V.; Mitrinović, D.S.; Rassias, T.M. Topics in Polynomials, Extremal Problems, Inequalities, Zeros, World Scientific, Singapore, 1994

[10] Mir, A.; Baba, S.A. Some integral inequalities for the polar derivative of a polynomial, Anal. Theory Appl., Volume 4 (2011), pp. 340-350

[11] Rahman, Q.I.; Schmeisser, G. Lp inequalities for polynomials, J. Approx. Theory, Volume 53 (1988), pp. 26-32

[12] Rahman, Q.I.; Schmeisser, G. Analytic Theory of Polynomials, Oxford University Press Inc., New York, 2002

[13] Rather, N.A. Lp inequalities for the polar derivative of a polynomial, J. Inequal. Pure Appl. Math., Volume 9 (2008) no. 4 (Art. 103, 10 p)

[14] Zireh, A. On the polar derivative of a polynomial, Bull. Iran. Math. Soc., Volume 40 (2014), pp. 967-976

[15] Zygmund, A. A remark on conjugate series, Proc. Lond. Math. Soc., Volume 34 (1932), pp. 392-400

Cité par Sources :