Lie algebras/Partial differential equations
Compatible Hamiltonian operators for the Krichever–Novikov equation
[Opérateurs hamiltoniens compatibles pour l'équation de Krichever–Novikov]
Comptes Rendus. Mathématique, Tome 355 (2017) no. 7, pp. 744-747.

Voir la notice de l'article provenant de la source Numdam

It has been proved by Sokolov that Krichever–Novikov equation's hierarchy is hamiltonian for the Hamiltonian operator H0=ux1ux and possesses two weakly non-local recursion operators of degrees 4 and 6, L4 and L6. We show here that H0, L4H0 and L6H0 are compatible Hamiltonians operators for which the Krichever–Novikov equation's hierarchy is hamiltonian.

Il a été démontré par Sokolov que la hiérarchie de l'équation de Krichever–Novikov est hamiltonienne pour l'opérateur hamiltonien H0=ux1ux et possède deux opérateurs de récursion faiblement non locaux de degrés 4 et 6, L4 et L6. Nous montrons ici que H0, L4H0 et L6H0 sont des opérateurs hamiltoniens compatibles pour lesquels la hiérarchie de l'équation de Krichever–Novikov est hamiltonienne.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2017.05.009

Carpentier, Sylvain 1

1 Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
@article{CRMATH_2017__355_7_744_0,
     author = {Carpentier, Sylvain},
     title = {Compatible {Hamiltonian} operators for the {Krichever{\textendash}Novikov} equation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {744--747},
     publisher = {Elsevier},
     volume = {355},
     number = {7},
     year = {2017},
     doi = {10.1016/j.crma.2017.05.009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2017.05.009/}
}
TY  - JOUR
AU  - Carpentier, Sylvain
TI  - Compatible Hamiltonian operators for the Krichever–Novikov equation
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 744
EP  - 747
VL  - 355
IS  - 7
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2017.05.009/
DO  - 10.1016/j.crma.2017.05.009
LA  - en
ID  - CRMATH_2017__355_7_744_0
ER  - 
%0 Journal Article
%A Carpentier, Sylvain
%T Compatible Hamiltonian operators for the Krichever–Novikov equation
%J Comptes Rendus. Mathématique
%D 2017
%P 744-747
%V 355
%N 7
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2017.05.009/
%R 10.1016/j.crma.2017.05.009
%G en
%F CRMATH_2017__355_7_744_0
Carpentier, Sylvain. Compatible Hamiltonian operators for the Krichever–Novikov equation. Comptes Rendus. Mathématique, Tome 355 (2017) no. 7, pp. 744-747. doi : 10.1016/j.crma.2017.05.009. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2017.05.009/

[1] Carpentier, S. A sufficient condition for a rational differential operator to generate an integrable system, Jpn. J. Math., Volume 12 (2017), pp. 33-89

[2] Carpentier, S.; De Sole, A.; Kac, V. Singular degree of a rational matrix pseudodifferential operator, Int. Math. Res. Not., Volume 2015 (2015) no. 13, pp. 5162-5195

[3] Demskoi, D.K.; Sokolov, V.V. On recursion operators for elliptic models, Nonlinearity, Volume 21 (2008) no. 6, pp. 1253-1264

[4] De Sole, A.; Kac, V.G. Non-local Hamiltonian structures and applications to the theory of integrable systems, Jpn. J. Math., Volume 8 (2013) no. 2, pp. 233-347

[5] Enriquez, B.; Orlov, A.; Rubtsov, V. Higher Hamiltonian structures (the sl2 case), JETP Lett., Volume 58 (1993) no. 8, pp. 658-664

[6] Ibragimov, N.Kh.; Shabat, A.B. Evolution equations with nontrivial Lie–Bäcklund group, Funkc. Anal. Prilozh., Volume 14 (1980) no. 1, pp. 25-36

[7] Krichever, J.M.; Novikov, S.P. Holomorphic bundles over algebraic curves and non-linear equations, Russ. Math. Surv., Volume 35 (1980) no. 6, pp. 53-79

[8] Magri, F., Lecture Notes in Physics, vol. 120, Springer-Verlag, Berlin (1980), p. 233

[9] Maltsev, A.Ya.; Novikov, S.P. On the local systems Hamiltonian in the weakly non-local Poisson brackets, Physica D, Volume 156 (2001), pp. 53-80

[10] Mikhailov, A.V.; Sokolov, V.V. Symmetries of differential equations and the problem of integrability (Mikhailov, A.V., ed.), Integrability, Lecture Notes in Physics, vol. 767, Springer, 2008

[11] Sokolov, V.V. On the hamiltonian property of the Krichever–Novikov equation, Sov. Math. Dokl., Volume 30 (1984) no. 1

Cité par Sources :