Partial differential equations
On the sub poly-harmonic property for solutions to (−Δ)pu < 0 in Rn
[De la sous-poly-harmonicité des solutions de (−Δ)pu < 0 dans Rn]
Comptes Rendus. Mathématique, Tome 355 (2017) no. 5, pp. 526-532.

Voir la notice de l'article provenant de la source Numdam

In this note, we mainly study the relation between the sign of (Δ)pu and (Δ)piu in Rn with p2 and n2 for 1ip1. Given the differential inequality (Δ)pu<0, first we provide several sufficient conditions so that (Δ)p1u<0 holds. Then we provide conditions such that (Δ)iu<0 for all i=1,2,,p1, which is known as the sub poly-harmonic property for u. In the last part of the note, we revisit the super poly-harmonic property for solutions to (Δ)pu=e2pu and (Δ)pu=uq with q>0 in Rn.

Dans cette Note, nous étudions principalement la relation entre le signe de (Δ)pu et (Δ)piu dans Rn pour 1ip1, avec n, p2. Étant donnée l'inégalité différentielle (Δ)p<0, nous montrons, dans un premier temps, plusieurs conditions suffisantes afin que l'inégalité (Δ)p1u<0 soit satisfaite. Puis, sous une hypothèse de croissance, nous montrons que (Δ)iu<0 pour tout i=1,2,,p1, c'est-à-dire que u satisfait la propriété de sous-poly-harmonicité. Dans la dernière partie de la Note, nous considérons la sur-poly-harmonicité des solutions de l'équation (Δ)pu=e2pu et (Δ)pu=uq, avec q>0, dans Rn.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2017.04.003

Ngô, Quốc Anh 1

1 Department of Mathematics, College of Science, Viêt Nam National University, Hà Nôi, Viet Nam
@article{CRMATH_2017__355_5_526_0,
     author = {Ng\^o, Quốc Anh},
     title = {On the sub poly-harmonic property for solutions to {(\ensuremath{-}\ensuremath{\Delta})\protect\textsuperscript{\protect\emph{p}}\protect\emph{u}\,<\,0} in $ {\mathbb{R}}^{n}$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {526--532},
     publisher = {Elsevier},
     volume = {355},
     number = {5},
     year = {2017},
     doi = {10.1016/j.crma.2017.04.003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2017.04.003/}
}
TY  - JOUR
AU  - Ngô, Quốc Anh
TI  - On the sub poly-harmonic property for solutions to (−Δ)pu < 0 in $ {\mathbb{R}}^{n}$
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 526
EP  - 532
VL  - 355
IS  - 5
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2017.04.003/
DO  - 10.1016/j.crma.2017.04.003
LA  - en
ID  - CRMATH_2017__355_5_526_0
ER  - 
%0 Journal Article
%A Ngô, Quốc Anh
%T On the sub poly-harmonic property for solutions to (−Δ)pu < 0 in $ {\mathbb{R}}^{n}$
%J Comptes Rendus. Mathématique
%D 2017
%P 526-532
%V 355
%N 5
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2017.04.003/
%R 10.1016/j.crma.2017.04.003
%G en
%F CRMATH_2017__355_5_526_0
Ngô, Quốc Anh. On the sub poly-harmonic property for solutions to (−Δ)pu < 0 in $ {\mathbb{R}}^{n}$. Comptes Rendus. Mathématique, Tome 355 (2017) no. 5, pp. 526-532. doi : 10.1016/j.crma.2017.04.003. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2017.04.003/

[1] Chen, W.; Li, C. Classification of solutions of some nonlinear elliptic equations, Duke Math. J., Volume 63 (1991), pp. 615-622

[2] Chen, W.; Li, C. Super polyharmonic property of solutions for PDE systems and its applications, Commun. Pure Appl. Anal., Volume 12 (2013), pp. 2497-2514

[3] Chen, W.; Li, C.; Ou, B. Classification of solutions for an integral equation, Commun. Pure Appl. Math., Volume 59 (2006), pp. 330-343

[4] Chen, W.; Fang, Y.; Li, C. Super poly-harmonic property of solutions for Navier boundary problems on a half space, J. Funct. Anal., Volume 265 (2013), pp. 1522-1555

[5] Choi, Y.S.; Xu, X. Nonlinear biharmonic equations with negative exponents, J. Differ. Equ., Volume 246 (2009), pp. 216-234

[6] Duoc, T.V.; Ngo, Q.A. On radial solutions of Δ2u+uq=0 in R3 with exactly quadratic growth at infinity, Differ. Integral Equ. (2017) (in press) | arXiv

[7] Fang, Y.; Chen, W. A Liouville type theorem for poly-harmonic Dirichlet problems in a half space, Adv. Math., Volume 229 (2012), pp. 2835-2867

[8] Farina, A.; Ferrero, A. Existence and stability properties of entire solutions to the polyharmonic equation (Δ)mu=eu for any m1, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 33 (2016), pp. 495-528

[9] Guerra, I. A note on nonlinear biharmonic equations with negative exponents, J. Differ. Equ., Volume 253 (2012), pp. 3147-3157

[10] Guo, Z.M.; Wei, J.C. Entire solutions and global bifurcations for a biharmonic equation with singular non-linearity in R3, Adv. Differ. Equ., Volume 13 (2008), pp. 753-780

[11] Lai, B.; Ye, D. Remarks on entire solutions for two fourth-order elliptic problems, Proc. Edinb. Math. Soc., Volume 59 (2016), pp. 777-786

[12] Liu, J.; Guo, Y.; Zhang, Y. Liouville-type theorems for polyharmonic systems in RN, J. Differ. Equ., Volume 225 (2006), pp. 685-709

[13] Ma, L.; Wei, J. Properties of positive solutions to an elliptic equation with negative exponent, J. Funct. Anal., Volume 254 (2008), pp. 1058-1087

[14] Martinazzi, L. Classification of solutions to the higher order Liouville's equation on R2m, Math. Z., Volume 263 (2009), pp. 307-329

[15] McKenna, P.J.; Reichel, W. Radial solutions of singular nonlinear biharmonic equations and applications to conformal geometry, Electron. J. Differ. Equ., Volume 37 (2003), pp. 1-13

[16] Wei, J.; Xu, X. Classification of solutions of higher order conformally invariant equations, Math. Ann., Volume 313 (1999), pp. 207-228

[17] Xu, X. Uniqueness theorem for the entire positive solutions of biharmonic equations in Rn, Proc. R. Soc. Edinb., Sect. A, Math., Volume 130 (2000), pp. 651-670

[18] Xu, X. Exact solutions of nonlinear conformally invariant integral equations in R3, Adv. Math., Volume 194 (2005), pp. 485-503

Cité par Sources :