Complex analysis/Analytic geometry
Lelong numbers, complex singularity exponents, and Siu's semicontinuity theorem
[Nombres de Lelong, exposants de singularités complexes et théorème de semi-continuité de Siu]
Comptes Rendus. Mathématique, Tome 355 (2017) no. 4, pp. 415-419.

Voir la notice de l'article provenant de la source Numdam

In this note, we describe a relation between Lelong numbers and complex singularity exponents. As an application, we obtain a new proof of Siu's semicontinuity theorem for Lelong numbers.

Dans cette note, nous décrivons une relation entre les nombres de Lelong et les exposants de singularités complexes. Comme application, nous obtenons une nouvelle preuve du théorème de semi-continuité de Siu pour les nombres de Lelong.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2017.03.006

Guan, Qi'an 1 ; Zhou, Xiangyu 2

1 School of Mathematical Sciences, and Beijing International Center for Mathematical Research, Peking University, Beijing 100871, China
2 Institute of Mathematics, AMSS, and Hua Loo-Keng Key Laboratory of Mathematics, Chinese Academy of Sciences, Beijing 100190, China
@article{CRMATH_2017__355_4_415_0,
     author = {Guan, Qi'an and Zhou, Xiangyu},
     title = {Lelong numbers, complex singularity exponents, and {Siu's} semicontinuity theorem},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {415--419},
     publisher = {Elsevier},
     volume = {355},
     number = {4},
     year = {2017},
     doi = {10.1016/j.crma.2017.03.006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2017.03.006/}
}
TY  - JOUR
AU  - Guan, Qi'an
AU  - Zhou, Xiangyu
TI  - Lelong numbers, complex singularity exponents, and Siu's semicontinuity theorem
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 415
EP  - 419
VL  - 355
IS  - 4
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2017.03.006/
DO  - 10.1016/j.crma.2017.03.006
LA  - en
ID  - CRMATH_2017__355_4_415_0
ER  - 
%0 Journal Article
%A Guan, Qi'an
%A Zhou, Xiangyu
%T Lelong numbers, complex singularity exponents, and Siu's semicontinuity theorem
%J Comptes Rendus. Mathématique
%D 2017
%P 415-419
%V 355
%N 4
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2017.03.006/
%R 10.1016/j.crma.2017.03.006
%G en
%F CRMATH_2017__355_4_415_0
Guan, Qi'an; Zhou, Xiangyu. Lelong numbers, complex singularity exponents, and Siu's semicontinuity theorem. Comptes Rendus. Mathématique, Tome 355 (2017) no. 4, pp. 415-419. doi : 10.1016/j.crma.2017.03.006. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2017.03.006/

[1] Berndtsson, B. The openness conjecture for plurisubharmonic functions | arXiv

[2] Bombieri, E. Algebraic values of meromorphic maps, Invent. Math., Volume 10 (1970), pp. 267-287 (Addendum: Invent. Math., 11, 1970, pp. 163-166)

[3] Demailly, J.-P. Nombres de Lelong généralisés, théorèmes d'intégralité et d'analyticité, Acta Math., Volume 159 (1987) no. 3–4, pp. 153-169 (in French)

[4] Demailly, J.-P. Multiplier ideal sheaves and analytic methods in algebraic geometry, Trieste, Italy, 2000 (ICTP Lect. Notes), Volume vol. 6, Abdus Salam Int. Cent. Theoret. Phys., Trieste, Italy (2001), pp. 1-148

[5] Demailly, J.-P. Analytic Methods in Algebraic Geometry, Higher Education Press, Beijing, 2010

[6] Demailly, J.-P. Complex analytic and differential geometry http://www-fourier.ujf-grenoble.fr/... (electronically accessible at:)

[7] Demailly, J.-P.; Kollár, J. Semi-continuity of complex singularity exponents and Kähler–Einstein metrics on Fano orbifolds, Ann. Sci. Éc. Norm. Supér. (4), Volume 34 (2001) no. 4, pp. 525-556

[8] Favre, C.; Jonsson, J. The Valuative Tree, Lecture Notes in Mathematics, vol. 1853, Springer-Verlag, Berlin, 2004 (xiv+234 pp) (ISBN: 3-540-22984-1)

[9] Favre, C.; Jonsson, M. Valuative analysis of planar plurisubharmonic functions, Invent. Math., Volume 162 (2005) no. 2, pp. 271-311

[10] Favre, C.; Jonsson, M. Valuations and multiplier ideals, J. Amer. Math. Soc., Volume 18 (2005) no. 3, pp. 655-684

[11] Hörmander, L. An Introduction to Complex Analysis in Several Variables, North-Holland Math. Library, vol. 7, Elsevier Science Publishers, New York, 1966

[12] Guan, Q.A.; Zhou, X.Y. Optimal constant in an L2 extension problem and a proof of a conjecture of Ohsawa, Sci. China Math., Volume 58 (2015) no. 1, pp. 35-59 | DOI

[13] Guan, Q.A.; Zhou, X.Y. A solution of an L2 extension problem with optimal estimate and applications, Ann. of Math. (2), Volume 181 (2015) no. 3, pp. 1139-1208

[14] Guan, Q.A.; Zhou, X.Y. A proof of Demailly's strong openness conjecture, Ann. of Math. (2), Volume 182 (2015) no. 2, pp. 605-616

[15] Guan, Q.A.; Zhou, X.Y. Effectiveness of Demailly's strong openness conjecture and related problems, Invent. Math., Volume 202 (2015) no. 2, pp. 635-676

[16] Guan, Q.A.; Zhou, X.Y. Characterization of multiplier ideal sheaves with weights of Lelong number one, Adv. Math., Volume 285 (2015), pp. 1688-1705

[17] C.O. Kiselman, Un nombre de Lelong raffiné, in: Séminaire d'analyse complexe et géométrie 1985–1987, Faculté des sciences de Tunis & Faculté des sciences et techniques de Monastir, Tunisie, pp. 61–70.

[18] Kiselman, C.O. Plurisubharmonic functions and potential theory in several complex variables, Dev. Math. 1950–2000, Birkhäuser, Basel, Switzerland, 2000, pp. 655-714

[19] Kollár, J. et al. Flips and abundance for algebraic threefolds, Astérisque, Volume 211 (1992)

[20] Nadel, A. Multiplier ideal sheaves and Kähler–Einstein metrics of positive scalar curvature, Ann. of Math. (2), Volume 132 (1990) no. 3, pp. 549-596

[21] Shokurov, V. 3-fold log flips, Izv. Russ. Acad. Nauk Ser. Mat., Volume 56 (1992), pp. 105-203

[22] Siu, Y.T. Analyticity of sets associated to Lelong numbers and the extension of closed positive currents, Invent. Math., Volume 27 (1974), pp. 53-156

[23] Siu, Y.T. Multiplier ideal sheaves in complex and algebraic geometry, Sci. China Ser. A, Volume 48 (2005) no. Suppl., pp. 1-31

[24] Skoda, H. Sous-ensembles analytiques d'ordre fini ou infini dans Cn, Bull. Soc. Math. France, Volume 100 (1972), pp. 353-408

[25] Tian, G. On Kähler–Einstein metrics on certain Kähler manifolds with C1(M)>0, Invent. Math., Volume 89 (1987) no. 2, pp. 225-246

Cité par Sources :

The authors were partially supported by NSFC-11431013. The second author would like to thank NTNU for offering him Onsager Professorship. The first author was partially supported by NSFC-11522101.