Lie algebras
A remark on boundary level admissible representations
[Une remarque sur les représentations admissibles de niveau limite]
Comptes Rendus. Mathématique, Tome 355 (2017) no. 2, pp. 128-132.

Voir la notice de l'article provenant de la source Numdam

We point out that it is immediate by our character formula that in the case of a boundary level the characters of admissible representations of affine Kac–Moody algebras and the corresponding W-algebras decompose in products in terms of the Jacobi form ϑ11(τ,z).

Nous remarquons la conséquence suivante de notre formule de caractères. Pour un niveau limite, les caractères d'une représentation admissible d'une algèbre de Kac–Moody affine ainsi que de la W-algèbre correspondante s'expriment comme des produits de formes de Jacobi ϑ11(τ,z).

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2017.01.008

Kac, Victor G. 1 ; Wakimoto, Minoru 1

1 Department of Mathematics, M.I.T., Cambridge, MA 02139, USA
@article{CRMATH_2017__355_2_128_0,
     author = {Kac, Victor G. and Wakimoto, Minoru},
     title = {A remark on boundary level admissible representations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {128--132},
     publisher = {Elsevier},
     volume = {355},
     number = {2},
     year = {2017},
     doi = {10.1016/j.crma.2017.01.008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2017.01.008/}
}
TY  - JOUR
AU  - Kac, Victor G.
AU  - Wakimoto, Minoru
TI  - A remark on boundary level admissible representations
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 128
EP  - 132
VL  - 355
IS  - 2
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2017.01.008/
DO  - 10.1016/j.crma.2017.01.008
LA  - en
ID  - CRMATH_2017__355_2_128_0
ER  - 
%0 Journal Article
%A Kac, Victor G.
%A Wakimoto, Minoru
%T A remark on boundary level admissible representations
%J Comptes Rendus. Mathématique
%D 2017
%P 128-132
%V 355
%N 2
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2017.01.008/
%R 10.1016/j.crma.2017.01.008
%G en
%F CRMATH_2017__355_2_128_0
Kac, Victor G.; Wakimoto, Minoru. A remark on boundary level admissible representations. Comptes Rendus. Mathématique, Tome 355 (2017) no. 2, pp. 128-132. doi : 10.1016/j.crma.2017.01.008. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2017.01.008/

[1] Beem, C.; Lemos, M.; Liendo, P.; Peelaers, W.; Rastelli, L.; van Rees, B.C. Infinite chiral symmetry in four dimensions, Commun. Math. Phys., Volume 336 (2015) no. 3, pp. 1359-1433

[2] Gorelik, M.; Kac, V.G. Characters of (relatively) integrable modules over affine Lie superalgebras, Jpn. J. Math., Volume 10 (2015) no. 2, pp. 135-235

[3] Kac, V.G. Infinite-Dimensional Lie Algebras, Cambridge University Press, 1990

[4] Kac, V.G.; Roan, S.-S.; Wakimoto, M. Quantum reduction of affine superalgebras, Commun. Math. Phys., Volume 241 (2003), pp. 307-342

[5] Kac, V.G.; Wakimoto, M. Modular invariant representations of infinite-dimensional Lie algebras and superalgebras, Proc. Natl. Acad. Sci. USA, Volume 85 (1988), pp. 4956-4960

[6] Kac, V.G.; Wakimoto, M. Classification of modular invariant representations of affine algebras, Advanced Series in Mathematical Physics, vol. 7, World Scientific, 1989, pp. 138-177

[7] Kac, V.G.; Wakimoto, M. Representations of affine superalgebras and mock theta functions, Transform. Groups, Volume 19 (2014), pp. 387-455

[8] J. Song, D. Xie, W. Yan, Chiral algebra, Higgs branch and superconformal index of the generalized Argyres–Douglas theory, in preparation.

[9] Verlinde, E. Fusion rules and modular transformations in 2D conformal field theory, Nucl. Phys. B, Volume 300 (1988), pp. 360-375

[10] Xie, D.; Yan, W.; Yau, S.-T. Chiral algebra of Argyres–Douglas theory from M5 brane | arXiv

Cité par Sources :