Voir la notice de l'article provenant de la source Numdam
In this work, we will establish local in time dispersive estimates for solutions to the model-case Dirichlet wave equation inside a cylindrical convex domain with a smooth boundary . Let us recall that dispersive estimates are key ingredients to prove Strichartz estimates. Nonoptimal Strichartz estimates for waves inside an arbitrary domain Ω have been proved by Blair–Smith–Sogge [1,2]. Better estimates in strictly convex domains have been obtained in [4]. Our case of cylindrical domains is an extension of the result of [4] in the case where the curvature radius ≥0 depends on the incident angle and vanishes in some directions.
Dans ce travail, nous allons établir des estimations de dispersion locales en temps pour les solutions de l'équation des ondes dans un domaine cylindrique convexe à bord . Les estimations de dispersion sont classiquement utilisées pour prouver les estimations de Strichartz. Dans un domaine Ω général, des estimations de Strichartz non optimales ont été démontrées par Blair–Smith–Sogge [1,2]. De meilleures estimations ont été prouvées dans [4] lorsque Ω est strictement convexe. Le cas des domaines cylindriques que nous considérons ici généralise les resultats de [4] dans le cas où la courbure ≥0 dépend de l'angle d'incidence et s'annule dans certaines directions.
Meas, Len 1
@article{CRMATH_2017__355_2_161_0, author = {Meas, Len}, title = {Dispersive estimates for the wave equation inside cylindrical convex domains: {A} model case}, journal = {Comptes Rendus. Math\'ematique}, pages = {161--165}, publisher = {Elsevier}, volume = {355}, number = {2}, year = {2017}, doi = {10.1016/j.crma.2017.01.005}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2017.01.005/} }
TY - JOUR AU - Meas, Len TI - Dispersive estimates for the wave equation inside cylindrical convex domains: A model case JO - Comptes Rendus. Mathématique PY - 2017 SP - 161 EP - 165 VL - 355 IS - 2 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2017.01.005/ DO - 10.1016/j.crma.2017.01.005 LA - en ID - CRMATH_2017__355_2_161_0 ER -
%0 Journal Article %A Meas, Len %T Dispersive estimates for the wave equation inside cylindrical convex domains: A model case %J Comptes Rendus. Mathématique %D 2017 %P 161-165 %V 355 %N 2 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2017.01.005/ %R 10.1016/j.crma.2017.01.005 %G en %F CRMATH_2017__355_2_161_0
Meas, Len. Dispersive estimates for the wave equation inside cylindrical convex domains: A model case. Comptes Rendus. Mathématique, Tome 355 (2017) no. 2, pp. 161-165. doi : 10.1016/j.crma.2017.01.005. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2017.01.005/
[1] On Strichartz estimates for Schrödinger operators in compact manifolds with boundary, Proc. Amer. Math. Soc., Volume 130 (2008), pp. 247-256
[2] Strichartz estimates for the wave equation on manifolds with boundary, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 26 (2009), pp. 1817-1829
[3] The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis, Class. Math., Springer-Verlag, New York, 2003
[4] Dispersion for the wave equation inside strictly convex domains I: the Friedlander model case, Ann. Math. (2), Volume 180 (2014), pp. 323-380
[5] Dispersion for the wave equation inside strictly convex domains II: the general case, 2016 | arXiv
Cité par Sources :
☆ This work was supported by the ERC project SCAPDE.