Mathematical analysis
On polynomial interpolation of bivariate harmonic polynomials
[Sur l'interpolation polynomiale des polynômes harmoniques à deux variables]
Comptes Rendus. Mathématique, Tome 355 (2017) no. 1, pp. 28-33.

Voir la notice de l'article provenant de la source Numdam

We use Kergin and Hakopian interpolants to give some bases for the dual space of bivariate harmonic polynomials.

Nous utilisons les interpolations de Kergin et d'Hakopian pour construire des bases du dual de l'espace des polynômes harmoniques à deux variables.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2016.11.008

Van Manh, Phung 1

1 Department of Mathematics, Hanoi National University of Education, 136 Xuan Thuy street, Cau Giay, Hanoi, Viet Nam
@article{CRMATH_2017__355_1_28_0,
     author = {Van Manh, Phung},
     title = {On polynomial interpolation of bivariate harmonic polynomials},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {28--33},
     publisher = {Elsevier},
     volume = {355},
     number = {1},
     year = {2017},
     doi = {10.1016/j.crma.2016.11.008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2016.11.008/}
}
TY  - JOUR
AU  - Van Manh, Phung
TI  - On polynomial interpolation of bivariate harmonic polynomials
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 28
EP  - 33
VL  - 355
IS  - 1
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2016.11.008/
DO  - 10.1016/j.crma.2016.11.008
LA  - en
ID  - CRMATH_2017__355_1_28_0
ER  - 
%0 Journal Article
%A Van Manh, Phung
%T On polynomial interpolation of bivariate harmonic polynomials
%J Comptes Rendus. Mathématique
%D 2017
%P 28-33
%V 355
%N 1
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2016.11.008/
%R 10.1016/j.crma.2016.11.008
%G en
%F CRMATH_2017__355_1_28_0
Van Manh, Phung. On polynomial interpolation of bivariate harmonic polynomials. Comptes Rendus. Mathématique, Tome 355 (2017) no. 1, pp. 28-33. doi : 10.1016/j.crma.2016.11.008. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2016.11.008/

[1] Bojanov, B.; Hakopian, H.; Sahakian, A. Spline Functions and Multivariate Interpolations, Springer-Verlag, 1993

[2] Bos, L.; Calvi, J.-P. Kergin interpolant at the roots of unity approximate C2 functions, J. Anal. Math., Volume 72 (1997), pp. 203-221

[3] Calvi, J.-P.; Filipsson, L. The polynomial projectors that preserve homogeneous differential relations: a new characterization of Kergin interpolation, East J. Approx., Volume 10 (2004), pp. 441-454

[4] Georgieva, I.; Hofreither, C. Interpolation of harmonic functions bases on Radon projections, Numer. Math., Volume 127 (2014), pp. 423-445

[5] Georgieva, I.; Hofreither, C. New results on regularity and errors of harmonic interpolation using Radon projections, J. Comput. Appl. Math., Volume 29 (2016), pp. 73-81

[6] Goodman, T.N.T. Interpolation in minimum seminorm and multivariate B-spline, J. Approx. Theory, Volume 37 (1983), pp. 212-223

[7] Hakopian, H.A. Multivariate divided differences and multivariate interpolation of Lagrange and Hermite type, J. Approx. Theory, Volume 34 (1982), pp. 286-305

[8] Micchelli, C.A. A constructive approach to Kergin interpolation in Rk: multivariate B-spline and Lagrange interpolation, Rocky Mt. J. Math., Volume 10 (1980), pp. 485-497

[9] Phung, V.M. On the convergence of Kergin and Hakopian interpolants at Leja sequences for the disk, Acta Math. Hung., Volume 136 (2012), pp. 165-188

Cité par Sources :