Voir la notice de l'article provenant de la source Numdam
We prove that the speed of the excited random walk is infinitely differentiable with respect to the bias parameter in for the dimension .
Nous montrons que la vitesse d'une marche aléatoire excitée sur , , est infiniment différentiable par rapport au paramètre de biais dans .
Pham, Cong-Dan 1
@article{CRMATH_2016__354_11_1119_0, author = {Pham, Cong-Dan}, title = {The infinite differentiability of the speed for excited random walks}, journal = {Comptes Rendus. Math\'ematique}, pages = {1119--1123}, publisher = {Elsevier}, volume = {354}, number = {11}, year = {2016}, doi = {10.1016/j.crma.2016.10.012}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2016.10.012/} }
TY - JOUR AU - Pham, Cong-Dan TI - The infinite differentiability of the speed for excited random walks JO - Comptes Rendus. Mathématique PY - 2016 SP - 1119 EP - 1123 VL - 354 IS - 11 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2016.10.012/ DO - 10.1016/j.crma.2016.10.012 LA - en ID - CRMATH_2016__354_11_1119_0 ER -
%0 Journal Article %A Pham, Cong-Dan %T The infinite differentiability of the speed for excited random walks %J Comptes Rendus. Mathématique %D 2016 %P 1119-1123 %V 354 %N 11 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2016.10.012/ %R 10.1016/j.crma.2016.10.012 %G en %F CRMATH_2016__354_11_1119_0
Pham, Cong-Dan. The infinite differentiability of the speed for excited random walks. Comptes Rendus. Mathématique, Tome 354 (2016) no. 11, pp. 1119-1123. doi : 10.1016/j.crma.2016.10.012. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2016.10.012/
[1] On the speed of a cookie random walk, Probab. Theory Relat. Fields, Volume 141 (2008) no. 3–4, pp. 625-645
[2] Excited random walk, Electron. Commun. Probab., Volume 8 (2003) no. 9, pp. 86-92
[3] Central limit theorem for the excited random walk in dimension , Electron. Commun. Probab., Volume 12 (2007) no. 30, pp. 303-314
[4] Cut points and diffusive random walks in random environment, Ann. Inst. Henri Poincaré Probab. Stat., Volume 39 (2003), pp. 527-555
[5] Excited against the tide: a random walk with competing drifts, Ann. Inst. Henri Poincaré Probab. Stat., Volume 48 (2012), pp. 745-773
[6] On range and local time of many-dimensional submartingales, J. Theor. Probab., Volume 27 (2014) no. 2, pp. 601-617
[7] On a general many-dimensional excited random walk, Ann. Probab., Volume 40 (2012) no. 5, pp. 2106-2130
[8] Monotonicity and regularity of the speed for excited random walks in higher dimensions, Electron. J. Probab., Volume 20 (2015), p. 72:1-72:25
[9] Multi-excited random walks on integers, Probab. Theory Relat. Fields, Volume 133 (2005) no. 1, pp. 98-122
Cité par Sources :