Voir la notice de l'article provenant de la source Numdam
A new proof is given of Quantum Ergodicity for Eisenstein Series for cusped hyperbolic surfaces. This result is also extended to higher dimensional examples, with variable curvature.
On donne une nouvelle preuve de l'ergodicité quantique des séries d'Eisenstein pour les surfaces de Riemann à pointes. On étend aussi ce résultat en plus grande dimension, en autorisant la courbure variable.
Bonthonneau, Yannick 1 ; Zelditch, Steve 2
@article{CRMATH_2016__354_9_907_0, author = {Bonthonneau, Yannick and Zelditch, Steve}, title = {Quantum ergodicity for {Eisenstein} functions}, journal = {Comptes Rendus. Math\'ematique}, pages = {907--911}, publisher = {Elsevier}, volume = {354}, number = {9}, year = {2016}, doi = {10.1016/j.crma.2016.06.006}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2016.06.006/} }
TY - JOUR AU - Bonthonneau, Yannick AU - Zelditch, Steve TI - Quantum ergodicity for Eisenstein functions JO - Comptes Rendus. Mathématique PY - 2016 SP - 907 EP - 911 VL - 354 IS - 9 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2016.06.006/ DO - 10.1016/j.crma.2016.06.006 LA - en ID - CRMATH_2016__354_9_907_0 ER -
%0 Journal Article %A Bonthonneau, Yannick %A Zelditch, Steve %T Quantum ergodicity for Eisenstein functions %J Comptes Rendus. Mathématique %D 2016 %P 907-911 %V 354 %N 9 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2016.06.006/ %R 10.1016/j.crma.2016.06.006 %G en %F CRMATH_2016__354_9_907_0
Bonthonneau, Yannick; Zelditch, Steve. Quantum ergodicity for Eisenstein functions. Comptes Rendus. Mathématique, Tome 354 (2016) no. 9, pp. 907-911. doi : 10.1016/j.crma.2016.06.006. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2016.06.006/
[1] Long time quantum evolution of observables, Commun. Math. Phys., Volume 343 (2016) no. 1, pp. 311-359
[2] Weyl laws for manifolds with hyperbolic cusps, December 2015 | arXiv
[3] Une nouvelle démonstration du prolongement méromorphe des séries d'Eisenstein, C. R. Acad. Sci. Paris, Sér. I Math., Volume 293 (1981) no. 7, pp. 361-363
[4] Ergodicité et fonctions propres du Laplacien, Commun. Math. Phys., Volume 102 (1985) no. 3, pp. 497-502
[5] The point spectrum and spectral geometry for Riemannian manifolds with cusps, Math. Nachr., Volume 125 (1986), pp. 243-257
[6] Spectral geometry and scattering theory for certain complete surfaces of finite volume, Invent. Math., Volume 109 (1992) no. 2, pp. 265-305
[7] Asymptotic behavior of periodic orbits of the horocycle flow and Eisenstein series, Commun. Pure Appl. Math., Volume 34 (1981) no. 6, pp. 719-739
[8] Pseudodifferential analysis on hyperbolic surfaces, J. Funct. Anal., Volume 68 (1986) no. 1, pp. 72-105
[9] Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math. J., Volume 55 (1987) no. 4, pp. 919-941
[10] Mean Lindelöf hypothesis and equidistribution of cusp forms and Eisenstein series, J. Funct. Anal., Volume 97 (1991) no. 1, pp. 1-49
[11] Semiclassical Analysis, Grad. Stud. Math., vol. 138, American Mathematical Society, Providence, RI, 2012
Cité par Sources :