Voir la notice de l'article provenant de la source Numdam
We prove a Bourgain–Brézis–Mironescu-type formula for a class of nonlocal magnetic spaces, which builds a bridge between a fractional magnetic operator recently introduced and the classical theory.
On démontre une formule du type Bourgain–Brézis–Mironescu pour une classe d'espaces magnétiques non locaux, qui jette un pont entre un opérateur magnétique fractionnaire récemment introduit et la théorie classique.
Squassina, Marco 1 ; Volzone, Bruno 2
@article{CRMATH_2016__354_8_825_0, author = {Squassina, Marco and Volzone, Bruno}, title = {Bourgain{\textendash}Br\'ezis{\textendash}Mironescu formula for magnetic operators}, journal = {Comptes Rendus. Math\'ematique}, pages = {825--831}, publisher = {Elsevier}, volume = {354}, number = {8}, year = {2016}, doi = {10.1016/j.crma.2016.04.013}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2016.04.013/} }
TY - JOUR AU - Squassina, Marco AU - Volzone, Bruno TI - Bourgain–Brézis–Mironescu formula for magnetic operators JO - Comptes Rendus. Mathématique PY - 2016 SP - 825 EP - 831 VL - 354 IS - 8 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2016.04.013/ DO - 10.1016/j.crma.2016.04.013 LA - en ID - CRMATH_2016__354_8_825_0 ER -
%0 Journal Article %A Squassina, Marco %A Volzone, Bruno %T Bourgain–Brézis–Mironescu formula for magnetic operators %J Comptes Rendus. Mathématique %D 2016 %P 825-831 %V 354 %N 8 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2016.04.013/ %R 10.1016/j.crma.2016.04.013 %G en %F CRMATH_2016__354_8_825_0
Squassina, Marco; Volzone, Bruno. Bourgain–Brézis–Mironescu formula for magnetic operators. Comptes Rendus. Mathématique, Tome 354 (2016) no. 8, pp. 825-831. doi : 10.1016/j.crma.2016.04.013. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2016.04.013/
[1] A semilinear Schrödinger equation in the presence of a magnetic field, Arch. Ration. Mech. Anal., Volume 170 (2003), pp. 277-295
[2] Schrödinger operators with magnetic fields. I. General interactions, Duke Math. J., Volume 45 (1978), pp. 847-883
[3] Another look at Sobolev spaces (Menaldi, J.L.; Rofman, E.; Sulem, A., eds.), Optimal Control and Partial Differential Equations. A Volume in Honor of Professor Alain Bensoussan's 60th Birthday, IOS Press, Amsterdam, 2001, pp. 439-455
[4] Limiting embedding theorems for when and applications, J. Anal. Math., Volume 87 (2002), pp. 77-101
[5] Stability of variational eigenvalues for the fractional p-Laplacian, Discrete Contin. Dyn. Syst., Ser. A, Volume 36 (2016), pp. 1813-1845
[6] Ground states for fractional magnetic operators | arXiv
[7] Partial Differential Equations, Graduate Series in Mathematics, American Mathematical Society, 2010
[8] Hardy–Lieb–Thirring inequalities for fractional Schrödinger operators, J. Amer. Math. Soc., Volume 21 (2008), pp. 925-950
[9] Magnetic relativistic Schrödinger operators and imaginary-time path integrals, Mathematical Physics, Spectral Theory and Stochastic Analysis, Operator Theory: Advances and Applications, vol. 232, Birkhäuser/Springer, Basel, Switzerland, 2013, pp. 247-297
[10] On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces, J. Funct. Anal., Volume 195 (2002), pp. 230-238
[11] Methods of Modern Mathematical Physics, I, Functional Analysis, Academic Press, Inc., New York, 1980
Cité par Sources :