Statistics
Note on conditional quantiles for functional ergodic data
[Note sur les quantiles conditionnels pour variables fonctionnelles ergodiques]
Comptes Rendus. Mathématique, Tome 354 (2016) no. 6, pp. 628-633.

Voir la notice de l'article provenant de la source Numdam

In this Note, we study the recursive kernel estimator of the conditional quantile of a scalar response variable Y given a random variable (rv) X taking values in a semi-metric space. We establish the almost complete consistency of this estimate when the observations are sampled from a functional ergodic process.

Dans cette Note, nous étudions l'estimateur à noyau récursif des quantiles conditionnels d'une variable réponse réelle Y sachant une variable aléatoire fonctionnelle X. Nous établissons la convergence presque complète de cet estimateur estimation lorsque les observations ont une corrélation ergodique.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2016.03.005

Benziadi, Fatima 1 ; Laksaci, Ali 2 ; Tebboune, Fethallah 3

1 Université Moulay Taher de Saida, Algeria
2 Laboratoire Statistique et Processus stochastiques, Université Djillali-Liabès, BP 89, S. B. A. 22000, Algeria
3 Université Djillali-Liabes, Sidi Bel Abbès, Algeria
@article{CRMATH_2016__354_6_628_0,
     author = {Benziadi, Fatima and Laksaci, Ali and Tebboune, Fethallah},
     title = {Note on conditional quantiles for functional ergodic data},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {628--633},
     publisher = {Elsevier},
     volume = {354},
     number = {6},
     year = {2016},
     doi = {10.1016/j.crma.2016.03.005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2016.03.005/}
}
TY  - JOUR
AU  - Benziadi, Fatima
AU  - Laksaci, Ali
AU  - Tebboune, Fethallah
TI  - Note on conditional quantiles for functional ergodic data
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 628
EP  - 633
VL  - 354
IS  - 6
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2016.03.005/
DO  - 10.1016/j.crma.2016.03.005
LA  - en
ID  - CRMATH_2016__354_6_628_0
ER  - 
%0 Journal Article
%A Benziadi, Fatima
%A Laksaci, Ali
%A Tebboune, Fethallah
%T Note on conditional quantiles for functional ergodic data
%J Comptes Rendus. Mathématique
%D 2016
%P 628-633
%V 354
%N 6
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2016.03.005/
%R 10.1016/j.crma.2016.03.005
%G en
%F CRMATH_2016__354_6_628_0
Benziadi, Fatima; Laksaci, Ali; Tebboune, Fethallah. Note on conditional quantiles for functional ergodic data. Comptes Rendus. Mathématique, Tome 354 (2016) no. 6, pp. 628-633. doi : 10.1016/j.crma.2016.03.005. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2016.03.005/

[1] Amiri, A.; Crambes, Ch.; Thiam, B. Recursive estimation of nonparametric regression with functional covariate, Comput. Stat. Data Anal., Volume 69 (2014), pp. 154-172

[2] Bogachev, V.I. Gaussian Measures, Math. Surv. Monogr., vol. 62, American Mathematical Society, 1999

[3] Bosq, D. Linear Processes in Function Spaces: Theory and Applications, Lecture Notes in Statistics, vol. 149, Springer, 2000

[4] Dabo-Niang, S.; Laksaci, A. Nonparametric quantile regression estimation for functional dependent data, Commun. Stat., Theory Methods, Volume 41 (2011), pp. 1254-1268

[5] Dabo-Niang, S.; Thiam, B. L1 consistency of a kernel estimate of spatial conditional quantile, Stat. Probab. Lett., Volume 80 (2010), pp. 1447-1458

[6] Delecroix, M.; Rosa, A.C. Nonparametric estimation of a regression function and its derivatives under an ergodic hypothesis, J. Nonparametr. Statist., Volume 6 (1996), pp. 367-382

[7] Ezzahrioui, M.; Ould-Saïd, E. Asymptotic results of a nonparametric conditional quantile estimator for functional time series, Commun. Stat., Theory Methods, Volume 37 (2008), pp. 2735-2759

[8] Ferraty, F.; Vieu, P. Nonparametric Functional Data Analysis. Theory and Practice, Springer-Verlag, New York, 2006

[9] Gheriballah, A.; Laksaci, A.; Sekkal, S. Nonparametric M-regression for functional ergodic data, Stat. Probab. Lett., Volume 83 (2013), pp. 902-908

[10] Laïb, N.; Ould-Saïd, E. A robust nonparametric estimation of the autoregression function under an ergodic hypothesis, Can. J. Stat., Volume 28 (2000), pp. 817-828

[11] Laïb, N.; Louani, D. Nonparametric kernel regression estimate for functional stationary ergodic data: asymptotic properties, J. Multivar. Anal., Volume 101 (2010), pp. 2266-2281

[12] Laïb, N.; Louani, D. Rates of strong consistencies of the regression function estimator for functional stationary ergodic data, J. Stat. Plan. Inference, Volume 141 (2011), pp. 359-372

[13] Laksaci, A.; Lemdani, M.; Ould-Saïd, E. L1-norm kernel estimator of conditional quantile for functional regressors: consistency and asymptotic normality, Stat. Probab. Lett., Volume 79 (2009), pp. 1065-1073

[14] Laksaci, A.; Lemdani, M.; Ould-Saïd, E. Asymptotic results for an L1-norm kernel estimator of the conditional quantile for functional dependent data with application to climatology, Sankhya, Ser. A, Volume 73 (2011), pp. 125-141

[15] Ramsay, J.O.; Silverman, B.W. Functional Data Analysis, Springer, New York, 2005

[16] Roussas, G.R.; Tran, L.T. Asymptotic normality of the recursive kernel regression estimate under dependence conditions, Ann. Stat., Volume 20 (1992), pp. 98-120

[17] Samanta, M. Non-parametric estimation of conditional quantiles, Stat. Probab. Lett., Volume 7 (1989), pp. 407-412

[18] Stone, C.J. Consistent nonparametric regression. Discussion, Ann. Stat., Volume 5 (1977), pp. 595-645

Cité par Sources :