Number theory
On the lower bound of the discrepancy of (t,s) sequences: I
[Sur la limite inférieure de la discrépance de (t,s) suites : I]
Comptes Rendus. Mathématique, Tome 354 (2016) no. 6, pp. 562-565.

Voir la notice de l'article provenant de la source Numdam

We find the exact lower bound of the discrepancy of shifted Niederreiter's sequences.

Nous trouvons une limite inférieure pour la discrépance de suites décalées de Niederreiter.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2016.02.011

Levin, Mordechay B. 1

1 Department of Mathematics, Bar-Ilan University, Ramat-Gan, 52900, Israel
@article{CRMATH_2016__354_6_562_0,
     author = {Levin, Mordechay B.},
     title = {On the lower bound of the discrepancy of (\protect\emph{t},\protect\emph{s}) sequences: {I}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {562--565},
     publisher = {Elsevier},
     volume = {354},
     number = {6},
     year = {2016},
     doi = {10.1016/j.crma.2016.02.011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2016.02.011/}
}
TY  - JOUR
AU  - Levin, Mordechay B.
TI  - On the lower bound of the discrepancy of (t,s) sequences: I
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 562
EP  - 565
VL  - 354
IS  - 6
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2016.02.011/
DO  - 10.1016/j.crma.2016.02.011
LA  - en
ID  - CRMATH_2016__354_6_562_0
ER  - 
%0 Journal Article
%A Levin, Mordechay B.
%T On the lower bound of the discrepancy of (t,s) sequences: I
%J Comptes Rendus. Mathématique
%D 2016
%P 562-565
%V 354
%N 6
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2016.02.011/
%R 10.1016/j.crma.2016.02.011
%G en
%F CRMATH_2016__354_6_562_0
Levin, Mordechay B. On the lower bound of the discrepancy of (t,s) sequences: I. Comptes Rendus. Mathématique, Tome 354 (2016) no. 6, pp. 562-565. doi : 10.1016/j.crma.2016.02.011. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2016.02.011/

[1] Bilyk, D. On Roth's orthogonal function method in discrepancy theory, Unif. Distrib. Theory, Volume 6 (2011) no. 1, pp. 143-184

[2] Dick, J.; Pillichshammer, F. Digital Nets and Sequences, Discrepancy Theory and Quasi-Monte Carlo Integration, Cambridge University Press, Cambridge, UK, 2010

[3] Drmota, M.; Tichy, R. Sequences, Discrepancies and Applications, Lecture Notes in Mathematics, vol. 1651, 1997

[4] Lemieux, C. Monte Carlo and Quasi-Monte Carlo Sampling, Springer Series in Statistics, Springer, New York, 2009

[5] Levin, M.B. On the lower bound of the discrepancy of (t,s) sequences: II http://arXiv.org/abs/1505.04975

[6] Niederreiter, H. Random Number Generation and Quasi-Monte Carlo Methods, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 63, SIAM, 1992

[7] Tezuka, S. On the discrepancy of generalized Niederreiter sequences, J. Complexity, Volume 29 (2013), pp. 240-247

Cité par Sources :