Voir la notice de l'article provenant de la source Numdam
We find the exact lower bound of the discrepancy of shifted Niederreiter's sequences.
Nous trouvons une limite inférieure pour la discrépance de suites décalées de Niederreiter.
Levin, Mordechay B. 1
@article{CRMATH_2016__354_6_562_0, author = {Levin, Mordechay B.}, title = {On the lower bound of the discrepancy of (\protect\emph{t},\protect\emph{s}) sequences: {I}}, journal = {Comptes Rendus. Math\'ematique}, pages = {562--565}, publisher = {Elsevier}, volume = {354}, number = {6}, year = {2016}, doi = {10.1016/j.crma.2016.02.011}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2016.02.011/} }
TY - JOUR AU - Levin, Mordechay B. TI - On the lower bound of the discrepancy of (t,s) sequences: I JO - Comptes Rendus. Mathématique PY - 2016 SP - 562 EP - 565 VL - 354 IS - 6 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2016.02.011/ DO - 10.1016/j.crma.2016.02.011 LA - en ID - CRMATH_2016__354_6_562_0 ER -
%0 Journal Article %A Levin, Mordechay B. %T On the lower bound of the discrepancy of (t,s) sequences: I %J Comptes Rendus. Mathématique %D 2016 %P 562-565 %V 354 %N 6 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2016.02.011/ %R 10.1016/j.crma.2016.02.011 %G en %F CRMATH_2016__354_6_562_0
Levin, Mordechay B. On the lower bound of the discrepancy of (t,s) sequences: I. Comptes Rendus. Mathématique, Tome 354 (2016) no. 6, pp. 562-565. doi : 10.1016/j.crma.2016.02.011. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2016.02.011/
[1] On Roth's orthogonal function method in discrepancy theory, Unif. Distrib. Theory, Volume 6 (2011) no. 1, pp. 143-184
[2] Digital Nets and Sequences, Discrepancy Theory and Quasi-Monte Carlo Integration, Cambridge University Press, Cambridge, UK, 2010
[3] Sequences, Discrepancies and Applications, Lecture Notes in Mathematics, vol. 1651, 1997
[4] Monte Carlo and Quasi-Monte Carlo Sampling, Springer Series in Statistics, Springer, New York, 2009
[5] On the lower bound of the discrepancy of sequences: II http://arXiv.org/abs/1505.04975
[6] Random Number Generation and Quasi-Monte Carlo Methods, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 63, SIAM, 1992
[7] On the discrepancy of generalized Niederreiter sequences, J. Complexity, Volume 29 (2013), pp. 240-247
Cité par Sources :