Voir la notice de l'article provenant de la source Numdam
We prove the existence of symmetric periodic solutions to
Dans cette note, nous prouvons l'existence de solutions périodiques symétriques de l'équation
Contreras, Andres 1 ; García-Azpeitia, Carlos 2
@article{CRMATH_2016__354_3_265_0, author = {Contreras, Andres and Garc{\'\i}a-Azpeitia, Carlos}, title = {Global bifurcation of vortex and dipole solutions in {Bose{\textendash}Einstein} condensates}, journal = {Comptes Rendus. Math\'ematique}, pages = {265--269}, publisher = {Elsevier}, volume = {354}, number = {3}, year = {2016}, doi = {10.1016/j.crma.2015.11.011}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2015.11.011/} }
TY - JOUR AU - Contreras, Andres AU - García-Azpeitia, Carlos TI - Global bifurcation of vortex and dipole solutions in Bose–Einstein condensates JO - Comptes Rendus. Mathématique PY - 2016 SP - 265 EP - 269 VL - 354 IS - 3 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2015.11.011/ DO - 10.1016/j.crma.2015.11.011 LA - en ID - CRMATH_2016__354_3_265_0 ER -
%0 Journal Article %A Contreras, Andres %A García-Azpeitia, Carlos %T Global bifurcation of vortex and dipole solutions in Bose–Einstein condensates %J Comptes Rendus. Mathématique %D 2016 %P 265-269 %V 354 %N 3 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2015.11.011/ %R 10.1016/j.crma.2015.11.011 %G en %F CRMATH_2016__354_3_265_0
Contreras, Andres; García-Azpeitia, Carlos. Global bifurcation of vortex and dipole solutions in Bose–Einstein condensates. Comptes Rendus. Mathématique, Tome 354 (2016) no. 3, pp. 265-269. doi : 10.1016/j.crma.2015.11.011. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2015.11.011/
[1] Quantum Mechanics, vol. 1, 1991
[2] Singularities and Groups in Bifurcation Theory II, Appl. Math. Sci., vol. 51, Springer-Verlag, 1986
[3] Dynamics of vortex dipoles in anisotropic Bose–Einstein condensates, SIAM J. Appl. Dyn. Syst., Volume 14 (2015) no. 2, pp. 699-729
[4] Equivariant Degree Theory, De Gruyter Series in Nonlinear Analysis and Applications, vol. 8, Walter de Gruyter, Berlin, 2003
[5] Vortex dynamics for the two-dimensional non-homogeneous Gross–Pitaevskii equation, Ann. Sc. Norm. Super. Pisa, Volume 14 (2015) no. 3, pp. 729-766
[6] Size and dynamics of vortex dipoles in dilute Bose–Einstein condensates, Phys. Rev. A, Volume 83 (2011) | DOI
[7] Guiding-center dynamics of vortex dipoles in Bose–Einstein condensates, Phys. Rev. A, Volume 84 (2011) | DOI
[8] The Joy of Quantum Physics, Oxford University Press, 2013
[9] Stationary vortex clusters in nonrotating Bose–Einstein condensates, Phys. Rev. A, Volume 71 (2005) | DOI
[10] Topics in Nonlinear Functional Analysis, Courant Lecture Notes, 2001
[11] Variational approximations of trapped vortices in the large-density limit, Nonlinearity, Volume 24 (2011), pp. 1271-1289
[12] Bifurcations of asymmetric vortices in symmetric harmonic traps, Appl. Math. Res. Express, Volume 2013 (2013) no. 1, pp. 127-164
[13] Some global results for nonlinear eigenvalue problems, J. Funct. Anal., Volume 7 (1971), pp. 487-513
[14] Dynamics of vortex dipoles in confined Bose–Einstein condensates, Phys. Lett. A, Volume 375 (2011), pp. 3044-3050
Cité par Sources :