Voir la notice de l'article provenant de la source Numdam
The present paper deals with the problem of local regularity of weak solutions to the Navier–Stokes equation in with forcing term f in . We prove that u is strong in a sub-cylinder if two velocity components , satisfy a Serrin-type condition.
Le présent papier traite le problème de la régularité locale de solutions faibles à l'équation de Navier–Stokes en de terme de force f en . Nous prouvons que u est forte dans un sous-cylindre si deux composantes de la vitesse , satisfont une condition de type Serrin.
Bae, Hyeong-Ohk 1 ; Wolf, Jörg 2
@article{CRMATH_2016__354_2_167_0, author = {Bae, Hyeong-Ohk and Wolf, J\"org}, title = {A local regularity condition involving two velocity components of {Serrin-type} for the {Navier{\textendash}Stokes} equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {167--174}, publisher = {Elsevier}, volume = {354}, number = {2}, year = {2016}, doi = {10.1016/j.crma.2015.10.020}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2015.10.020/} }
TY - JOUR AU - Bae, Hyeong-Ohk AU - Wolf, Jörg TI - A local regularity condition involving two velocity components of Serrin-type for the Navier–Stokes equations JO - Comptes Rendus. Mathématique PY - 2016 SP - 167 EP - 174 VL - 354 IS - 2 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2015.10.020/ DO - 10.1016/j.crma.2015.10.020 LA - en ID - CRMATH_2016__354_2_167_0 ER -
%0 Journal Article %A Bae, Hyeong-Ohk %A Wolf, Jörg %T A local regularity condition involving two velocity components of Serrin-type for the Navier–Stokes equations %J Comptes Rendus. Mathématique %D 2016 %P 167-174 %V 354 %N 2 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2015.10.020/ %R 10.1016/j.crma.2015.10.020 %G en %F CRMATH_2016__354_2_167_0
Bae, Hyeong-Ohk; Wolf, Jörg. A local regularity condition involving two velocity components of Serrin-type for the Navier–Stokes equations. Comptes Rendus. Mathématique, Tome 354 (2016) no. 2, pp. 167-174. doi : 10.1016/j.crma.2015.10.020. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2015.10.020/
[1] -bound of weak solutions to Navier–Stokes equations, Taejon, 1996 (Lecture Notes Ser.), Volume vol. 39 (1997) (13 p)
[2] A regularity criterion for the Navier–Stokes equations, Commun. Partial Differ. Equ., Volume 32 (2007), pp. 1173-1187
[3] On the smoothness of a class of weak solutions to the Navier–Stokes equations, J. Math. Fluid Mech., Volume 2 (2000) no. 4, pp. 315-323
[4] Regularity of solutions to the Navier–Stokes equation, Electron. J. Differ. Equ., Volume 1999 (1999) no. 5, pp. 1-7
[5] On the interior regularity of suitable weak solutions to the Navier–Stokes equations, Commun. Partial Differ. Equ., Volume 32 (2007) no. 7–9, pp. 1189-1207
[6] The initial value problem for the Navier–Stokes equations with data in , Arch. Ration. Mech. Anal., Volume 45 (1972), pp. 222-240
[7] An Introduction to the Mathematical Theory of the Navier–Stokes Equations, vol. I, Linearized Steady Problems, vol. 38, Springer-Verlag, New York, 1994
[8] On the Stokes problem in Lipschitz domains, Ann. Mat. Pura Appl. (4), Volume 167 (1994), pp. 147-1633
[9] One-component regularity for the Navier–Stokes equations, Nonlinearity, Volume 19 (2006) no. 2, pp. 453-469
[10] Regularity of a suitable weak solution to the Navier–Stokes equations as a consequence of regularity of one velocity component (Sequeira, A.; Beirão da Veiga, H.; Videman, J.H., eds.), Applied Nonlinear Analysis, Kluwer/Plenum, New York, 1999, pp. 391-402
[11] An interior regularity criterion for an axially symmetric suitable weak solution to the Navier–Stokes equations, J. Math. Fluid Mech., Volume 2 (2000), pp. 381-399
[12] On the interior regularity of weak solutions of the Navier–Stokes equations, Arch. Ration. Mech. Anal., Volume 9 (1962), pp. 187-195
[13] On partial regularity results for the Navier–Stokes equations, Commun. Pure Appl. Math., Volume 41 (1988), pp. 437-458
[14] On the local regularity of suitable weak solutions to the generalized Navier–Stokes equations, Ann. Univ. Ferrara, Volume 61 (2015) no. 1, pp. 149-171
[15] J. Wolf, On the local pressure of the Navier–Stokes equations and related systems (2015), submitted for publication.
[16] A new regularity criterion for the Navier–Stokes equations in terms of the gradient of one velocity component, Methods Appl. Anal., Volume 9 (2002) no. 4, pp. 563-578
Cité par Sources :