Partial differential equations/Differential geometry
Keller–Lieb–Thirring inequalities for Schrödinger operators on cylinders
[Inégalités de Keller–Lieb–Thirring pour des opérateurs de Schrödinger sur des cylindres]
Comptes Rendus. Mathématique, Tome 353 (2015) no. 9, pp. 813-818.

Voir la notice de l'article provenant de la source Numdam

This note is devoted to Keller–Lieb–Thirring spectral estimates for Schrödinger operators on infinite cylinders: the absolute value of the ground state level is bounded by a function of a norm of the potential. Optimal potentials with small norms are shown to depend on a single variable: this is a symmetry result. The proof is a perturbation argument based on recent rigidity results for nonlinear elliptic equations on cylinders. Conversely, optimal single variable potentials with large norms must be unstable: this provides a symmetry breaking result. The optimal threshold between the two regimes is established in the case of the product of a sphere by a line.

Cette note est consacrée à des estimations spectrales de Keller–Lieb–Thirring pour des opérateurs de Schrödinger sur des cylindres infinis : la valeur absolue de l'état fondamental est bornée par une fonction d'une norme du potentiel. Il est montré que les potentiels optimaux de petite norme ne dépendent que d'une seule variable : il s'agit d'un résultat de symétrie. La preuve provient d'un argument de perturbation qui repose sur des résultats de rigidité récents pour des équations elliptiques non linéaires sur des cylindres. À l'inverse, les potentiels optimaux de grande norme qui ne dépendent que d'une seule variable sont instables : cela fournit un résultat de brisure de symétrie. La valeur optimale qui sépare les deux régimes est établie dans le cas du produit d'une sphère et d'une droite.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2015.06.018

Dolbeault, Jean 1 ; Esteban, Maria J. 1 ; Loss, Michael 2

1 Ceremade UMR CNRS No. 7534, Université Paris-Dauphine, place de Lattre-de-Tassigny, 75775 Paris cedex 16, France
2 Skiles Building, Georgia Institute of Technology, Atlanta, GA 30332-0160, USA
@article{CRMATH_2015__353_9_813_0,
     author = {Dolbeault, Jean and Esteban, Maria J. and Loss, Michael},
     title = {Keller{\textendash}Lieb{\textendash}Thirring inequalities for {Schr\"odinger} operators on cylinders},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {813--818},
     publisher = {Elsevier},
     volume = {353},
     number = {9},
     year = {2015},
     doi = {10.1016/j.crma.2015.06.018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2015.06.018/}
}
TY  - JOUR
AU  - Dolbeault, Jean
AU  - Esteban, Maria J.
AU  - Loss, Michael
TI  - Keller–Lieb–Thirring inequalities for Schrödinger operators on cylinders
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 813
EP  - 818
VL  - 353
IS  - 9
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2015.06.018/
DO  - 10.1016/j.crma.2015.06.018
LA  - en
ID  - CRMATH_2015__353_9_813_0
ER  - 
%0 Journal Article
%A Dolbeault, Jean
%A Esteban, Maria J.
%A Loss, Michael
%T Keller–Lieb–Thirring inequalities for Schrödinger operators on cylinders
%J Comptes Rendus. Mathématique
%D 2015
%P 813-818
%V 353
%N 9
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2015.06.018/
%R 10.1016/j.crma.2015.06.018
%G en
%F CRMATH_2015__353_9_813_0
Dolbeault, Jean; Esteban, Maria J.; Loss, Michael. Keller–Lieb–Thirring inequalities for Schrödinger operators on cylinders. Comptes Rendus. Mathématique, Tome 353 (2015) no. 9, pp. 813-818. doi : 10.1016/j.crma.2015.06.018. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2015.06.018/

[1] Catrina, F.; Wang, Z.-Q. On the Caffarelli–Kohn–Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions, Commun. Pure Appl. Math., Volume 54 (2001) no. 2, pp. 229-258

[2] Dolbeault, J.; Esteban, M.J. Branches of non-symmetric critical points and symmetry breaking in nonlinear elliptic partial differential equations, Nonlinearity, Volume 27 (2014) no. 3, p. 435

[3] Dolbeault, J.; Esteban, M.J.; Laptev, A. Spectral estimates on the sphere, Anal. PDE, Volume 7 (2014) no. 2, pp. 435-460

[4] Dolbeault, J.; Esteban, M.J.; Laptev, A.; Loss, M. Spectral properties of Schrödinger operators on compact manifolds: rigidity, flows, interpolation and spectral estimates, C. R. Acad. Sci. Paris, Ser. I, Volume 351 (2013) no. 11–12, pp. 437-440

[5] Dolbeault, J.; Esteban, M.J.; Laptev, A.; Loss, M. One-dimensional Gagliardo–Nirenberg–Sobolev inequalities: remarks on duality and flows, J. Lond. Math. Soc., Volume 90 (2014) no. 2, pp. 525-550

[6] Dolbeault, J.; Esteban, M.J.; Loss, M. Symmetry of extremals of functional inequalities via spectral estimates for linear operators, J. Math. Phys., Volume 53 (2012), p. 095204

[7] J. Dolbeault, M.J. Esteban, M. Loss, Rigidity versus symmetry breaking via nonlinear flows on cylinders and euclidean spaces, Preprint, 2015, . | HAL

[8] Dolbeault, J.; Esteban, M.J.; Loss, M.; Tarantello, G. On the symmetry of extremals for the Caffarelli–Kohn–Nirenberg inequalities, Adv. Nonlinear Stud., Volume 9 (2009) no. 4, pp. 713-726

[9] J. Dolbeault, M. Kowalczyk, Uniqueness and rigidity in nonlinear elliptic equations, interpolation inequalities, and spectral estimates, Preprint, 2014, . | HAL

[10] Felli, V.; Schneider, M. Perturbation results of critical elliptic equations of Caffarelli–Kohn–Nirenberg type, J. Differ. Equ., Volume 191 (2003) no. 1, pp. 121-142

[11] Keller, J.B. Lower bounds and isoperimetric inequalities for eigenvalues of the Schrödinger equation, J. Math. Phys., Volume 2 (1961), pp. 262-266

[12] Lieb, E.H.; Thirring, W.E. Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities (Lieb, E.; Simon, B.; Wightman, A., eds.), Essays in Honor of Valentine Bargmann, Princeton University Press, 1976, pp. 269-303

Cité par Sources :