Voir la notice de l'article provenant de la source Numdam
In this paper, we define a sequence of polynomials depending only on the choice of two analytic functions A and H in a neighborhood of zero. For a pair of compositional inverses A and B, we will show the identity , which generalize the Carlitz's identity on Bernoulli polynomials.
Dans ce papier, on définit une suite de polynômes dépendant seulement du choix de deux fonctions analytiques dans un voisinage de zéro. Pour une paire de fonctions réciproques A et B, on montre l'identité , qui généralise l'identité de Carlitz sur les polynômes de Bernoulli.
Mihoubi, Miloud 1 ; Saidi, Yamina 1
@article{CRMATH_2015__353_9_773_0, author = {Mihoubi, Miloud and Saidi, Yamina}, title = {An identity on pairs of {Appell-type} polynomials}, journal = {Comptes Rendus. Math\'ematique}, pages = {773--778}, publisher = {Elsevier}, volume = {353}, number = {9}, year = {2015}, doi = {10.1016/j.crma.2015.06.013}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2015.06.013/} }
TY - JOUR AU - Mihoubi, Miloud AU - Saidi, Yamina TI - An identity on pairs of Appell-type polynomials JO - Comptes Rendus. Mathématique PY - 2015 SP - 773 EP - 778 VL - 353 IS - 9 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2015.06.013/ DO - 10.1016/j.crma.2015.06.013 LA - en ID - CRMATH_2015__353_9_773_0 ER -
%0 Journal Article %A Mihoubi, Miloud %A Saidi, Yamina %T An identity on pairs of Appell-type polynomials %J Comptes Rendus. Mathématique %D 2015 %P 773-778 %V 353 %N 9 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2015.06.013/ %R 10.1016/j.crma.2015.06.013 %G en %F CRMATH_2015__353_9_773_0
Mihoubi, Miloud; Saidi, Yamina. An identity on pairs of Appell-type polynomials. Comptes Rendus. Mathématique, Tome 353 (2015) no. 9, pp. 773-778. doi : 10.1016/j.crma.2015.06.013. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2015.06.013/
[1] Exponential polynomials, Ann. Math., Volume 35 (1934), pp. 258-277
[2] Bernoulli and Eulerian numbers, Util. Math., Volume 15 (1979), pp. 51-88
[3] Advanced Combinatorics, D. Reidel Publishing Company, Dordrecht, the Netherlands/Boston, USA, 1974
[4] A note on concavity properties of triangular arrays of numbers, J. Comb. Theory, Ser. A, Volume 13 (1972), pp. 135-139
[5] Bell polynomials and binomial type sequences, Discrete Math., Volume 308 (2008), pp. 2450-2459
[6] Bernoulli polynomials of the second kind and general order, Indian J. Pure Appl. Math., Volume 11 (1980) no. 10, pp. 1361-1368
[7] The Umbral Calculus, Dover Publ. Inc., New York, 2005
[8] On Appell sequences of polynomials of Bernoulli and Euler type, J. Math. Anal. Appl., Volume 341 (2008), pp. 1295-1310
[9] A new class of generalized Apostol–Bernoulli polynomials and some analogues of the Srivastava–Pintér addition theorem, Appl. Math. Lett., Volume 24 (2011), pp. 1888-1893
[10] Generalized higher order Bernoulli number pairs and generalized Stirling number pairs, J. Math. Anal. Appl., Volume 364 (2010), pp. 255-274
Cité par Sources :