Voir la notice de l'article provenant de la source Numdam
In this paper, we will estimate the lower bounds and upper bounds of the first eigenvalues for bi-harmonic operators on manifolds through Reilly's and Bochner's formulae, respectively.
Dans cette Note, nous donnons des minorants et majorants des premières valeurs propres de l'opérateur bi-harmonique sur une variété riemannienne, compacte, connexe, en utilisant respectivement les formules de Reilly et de Bochner.
Zhang, Liuwei 1
@article{CRMATH_2015__353_8_735_0, author = {Zhang, Liuwei}, title = {The lower and upper bounds of the first eigenvalues for the bi-harmonic operator on manifolds}, journal = {Comptes Rendus. Math\'ematique}, pages = {735--740}, publisher = {Elsevier}, volume = {353}, number = {8}, year = {2015}, doi = {10.1016/j.crma.2015.06.001}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2015.06.001/} }
TY - JOUR AU - Zhang, Liuwei TI - The lower and upper bounds of the first eigenvalues for the bi-harmonic operator on manifolds JO - Comptes Rendus. Mathématique PY - 2015 SP - 735 EP - 740 VL - 353 IS - 8 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2015.06.001/ DO - 10.1016/j.crma.2015.06.001 LA - en ID - CRMATH_2015__353_8_735_0 ER -
%0 Journal Article %A Zhang, Liuwei %T The lower and upper bounds of the first eigenvalues for the bi-harmonic operator on manifolds %J Comptes Rendus. Mathématique %D 2015 %P 735-740 %V 353 %N 8 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2015.06.001/ %R 10.1016/j.crma.2015.06.001 %G en %F CRMATH_2015__353_8_735_0
Zhang, Liuwei. The lower and upper bounds of the first eigenvalues for the bi-harmonic operator on manifolds. Comptes Rendus. Mathématique, Tome 353 (2015) no. 8, pp. 735-740. doi : 10.1016/j.crma.2015.06.001. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2015.06.001/
[1] Isoperimetric Inequalities, Cambridge Tracts in Math., vol. 145, Cambridge University Press, Cambridge, UK, 2001
[2] On eigenvalues of a system of elliptic equations and biharmonic operator, J. Math. Anal. Appl., Volume 387 (2012), pp. 1146-1159
[3] Normal integral currents, Ann. Math., Volume 72 (1960), pp. 458-520
[4] Unrestricted lower bounds for eigenvalues for classes of elliptic equations and systems of equations with applications to problems in elasticity, Math. Methods Appl. Sci., Volume 7 (1985) no. 2, pp. 210-222
[5] On the Schrödinger equations and the eigenvalue problem, Commun. Math. Phys., Volume 88 (1983), pp. 309-318
[6] Classes of domains and embedding theorems for functional spaces, Dokl. Akad. Nauk SSSR, Volume 133 (1960), pp. 527-530 (in Russian). Engl. transl.: Soviet Math. Dokl., 1, 1961, pp. 882-888
[7] Applications of the Hessian operator in a Riemannian manifold, Indiana Univ. Math. J., Volume 26 (1977), pp. 459-472
[8] Sharp isoperimetric inequalities and sphere theorems, Pac. J. Math., Volume 220 (2005) no. 1, pp. 183-195
Cité par Sources :
☆ This work is supported by the National Natural Science Foundation of China (No. 11201400).