Geometry
The lower and upper bounds of the first eigenvalues for the bi-harmonic operator on manifolds
[Bornes inférieures et supérieures des premières valeurs propres de l'opérateur bi-harmonique sur une variété]
Comptes Rendus. Mathématique, Tome 353 (2015) no. 8, pp. 735-740.

Voir la notice de l'article provenant de la source Numdam

In this paper, we will estimate the lower bounds and upper bounds of the first eigenvalues for bi-harmonic operators on manifolds through Reilly's and Bochner's formulae, respectively.

Dans cette Note, nous donnons des minorants et majorants des premières valeurs propres de l'opérateur bi-harmonique sur une variété riemannienne, compacte, connexe, en utilisant respectivement les formules de Reilly et de Bochner.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2015.06.001

Zhang, Liuwei 1

1 Department of Mathematics, Tongji University, Shanghai, 200092, PR China
@article{CRMATH_2015__353_8_735_0,
     author = {Zhang, Liuwei},
     title = {The lower and upper bounds of the first eigenvalues for the bi-harmonic operator on manifolds},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {735--740},
     publisher = {Elsevier},
     volume = {353},
     number = {8},
     year = {2015},
     doi = {10.1016/j.crma.2015.06.001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2015.06.001/}
}
TY  - JOUR
AU  - Zhang, Liuwei
TI  - The lower and upper bounds of the first eigenvalues for the bi-harmonic operator on manifolds
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 735
EP  - 740
VL  - 353
IS  - 8
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2015.06.001/
DO  - 10.1016/j.crma.2015.06.001
LA  - en
ID  - CRMATH_2015__353_8_735_0
ER  - 
%0 Journal Article
%A Zhang, Liuwei
%T The lower and upper bounds of the first eigenvalues for the bi-harmonic operator on manifolds
%J Comptes Rendus. Mathématique
%D 2015
%P 735-740
%V 353
%N 8
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2015.06.001/
%R 10.1016/j.crma.2015.06.001
%G en
%F CRMATH_2015__353_8_735_0
Zhang, Liuwei. The lower and upper bounds of the first eigenvalues for the bi-harmonic operator on manifolds. Comptes Rendus. Mathématique, Tome 353 (2015) no. 8, pp. 735-740. doi : 10.1016/j.crma.2015.06.001. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2015.06.001/

[1] Chavel, I. Isoperimetric Inequalities, Cambridge Tracts in Math., vol. 145, Cambridge University Press, Cambridge, UK, 2001

[2] Chen, D.G.; Cheng, Q.M.; Wang, Q.L.; Xia, C.Y. On eigenvalues of a system of elliptic equations and biharmonic operator, J. Math. Anal. Appl., Volume 387 (2012), pp. 1146-1159

[3] Federer, H.; Fleming, W.H. Normal integral currents, Ann. Math., Volume 72 (1960), pp. 458-520

[4] Levine, H.A.; Protter, M.H. Unrestricted lower bounds for eigenvalues for classes of elliptic equations and systems of equations with applications to problems in elasticity, Math. Methods Appl. Sci., Volume 7 (1985) no. 2, pp. 210-222

[5] Li, P.; Yau, S.T. On the Schrödinger equations and the eigenvalue problem, Commun. Math. Phys., Volume 88 (1983), pp. 309-318

[6] Maz'ya, V.G. Classes of domains and embedding theorems for functional spaces, Dokl. Akad. Nauk SSSR, Volume 133 (1960), pp. 527-530 (in Russian). Engl. transl.: Soviet Math. Dokl., 1, 1961, pp. 882-888

[7] Reilly, R. Applications of the Hessian operator in a Riemannian manifold, Indiana Univ. Math. J., Volume 26 (1977), pp. 459-472

[8] Wei, S.; Zhu, M. Sharp isoperimetric inequalities and sphere theorems, Pac. J. Math., Volume 220 (2005) no. 1, pp. 183-195

Cité par Sources :

This work is supported by the National Natural Science Foundation of China (No. 11201400).