Voir la notice de l'article provenant de la source Numdam
Let F be a finite field of odd cardinality q, the polynomial ring over F, the rational function field over F and the set of square-free monic polynomials in A of degree odd. If , we denote by the integral closure of A in . In this Note, we give a simple proof for the average value of the size of the groups as D varies over the ensemble and q is kept fixed. The proof is based on character sums estimates and on the use of the Riemann hypothesis for curves over finite fields.
Soit F un corps fini de cardinalité impaire q, l'anneau de polynômes sur F, le corps des fonctions rationnelles sur F et l'ensemble des polynômes unitaires et sans facteur carré en A de degré impair. Si , on note par la clóture intégrale de A en . Dans cette Note, nous donnons une preuve simple de la valeur moyenne de la taille des groupes quand D varie dans l'ensemble et quand q est maintenu fixe. La preuve est basée sur des estimations des sommes de caractères et sur l'utilisation de l'hypothèse de Riemann pour les courbes sur les corps finis.
Andrade, Julio 1, 2
@article{CRMATH_2015__353_8_677_0, author = {Andrade, Julio}, title = {A simple proof of the mean value of $ |{K}_{2}(\mathcal{O})|$ in function fields}, journal = {Comptes Rendus. Math\'ematique}, pages = {677--682}, publisher = {Elsevier}, volume = {353}, number = {8}, year = {2015}, doi = {10.1016/j.crma.2015.04.018}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2015.04.018/} }
TY - JOUR AU - Andrade, Julio TI - A simple proof of the mean value of $ |{K}_{2}(\mathcal{O})|$ in function fields JO - Comptes Rendus. Mathématique PY - 2015 SP - 677 EP - 682 VL - 353 IS - 8 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2015.04.018/ DO - 10.1016/j.crma.2015.04.018 LA - en ID - CRMATH_2015__353_8_677_0 ER -
%0 Journal Article %A Andrade, Julio %T A simple proof of the mean value of $ |{K}_{2}(\mathcal{O})|$ in function fields %J Comptes Rendus. Mathématique %D 2015 %P 677-682 %V 353 %N 8 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2015.04.018/ %R 10.1016/j.crma.2015.04.018 %G en %F CRMATH_2015__353_8_677_0
Andrade, Julio. A simple proof of the mean value of $ |{K}_{2}(\mathcal{O})|$ in function fields. Comptes Rendus. Mathématique, Tome 353 (2015) no. 8, pp. 677-682. doi : 10.1016/j.crma.2015.04.018. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2015.04.018/
[1] J.C. Andrade, Rudnick and Soundararajan's theorem for function fields, preprint, 2014.
[2] The mean value of in the hyperelliptic ensemble, J. Number Theory, Volume 132 (2012), pp. 2793-2816
[3] Conjectures for the integral moments and ratios of L-functions over function fields, J. Number Theory, Volume 142 (2014), pp. 102-148
[4] Statistics of the zeros of zeta functions in families of hyperelliptic curves over a finite field, Compos. Math., Volume 146 (2010), pp. 81-101
[5] Eisenstein series of -integral weight and the mean value of real Dirichlet L-series, Invent. Math., Volume 80 (1985), pp. 185-208
[6] Average values of L-series in function fields, J. Reine Angew. Math., Volume 426 (1992), pp. 117-150
[7] Estimates for coefficients of L-functions for function fields, Finite Fields Appl., Volume 5 (1999), pp. 76-88
[8] On the mean value of for real characters, Analysis, Volume 1 (1981), pp. 149-161
[9] On the cohomology and K-theory of the general linear group over a finite field, Ann. Math. (2), Volume 96 (1972), pp. 552-586
[10] Average value of in function fields, Finite Fields Appl., Volume 1 (1995), pp. 235-241
[11] Number Theory in Function Fields, Graduate Texts in Mathematics, vol. 210, Springer-Verlag, New York, 2002
[12] Symbols in arithmetic, International Congress of Mathematics, vol. 1, Gauthier-Villars, Paris, 1971, pp. 201-211
Cité par Sources :