Dynamical systems
The C0 general density theorem for geodesic flows
[Le théorème de densité de Pugh C0 pour les flots géodésiques]
Comptes Rendus. Mathématique, Tome 353 (2015) no. 6, pp. 545-549.

Voir la notice de l'article provenant de la source Numdam

Given a closed Riemannian manifold, we prove the C0-general density theorem for continuous geodesic flows. More precisely, we prove that there exists a residual (in the C0-sense) subset of the continuous geodesic flows such that, in that residual subset, the geodesic flow exhibits dense closed orbits.

Étant donnée une variété riemannienne compacte sans bord, nous démontrons un théorème de densité C0-générique pour les flots géodésiques et, plus précisément, nous prouvons qu'il existe une partie C0-résiduelle de l'ensemble des flots géodésiques continus, telle que tout flot dans cette partie admet un ensemble dense d'orbites périodiques.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2015.03.012

Bessa, Mário 1 ; Torres, Maria Joana 2

1 CMA-UBI, Departamento de Matemática, Universidade da Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal
2 CMAT, Departamento de Matemática e Aplicações, Universidade do Minho, Campus de Gualtar, 4700-057 Braga, Portugal
@article{CRMATH_2015__353_6_545_0,
     author = {Bessa, M\'ario and Torres, Maria Joana},
     title = {The $ {C}^{0}$ general density theorem for geodesic flows},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {545--549},
     publisher = {Elsevier},
     volume = {353},
     number = {6},
     year = {2015},
     doi = {10.1016/j.crma.2015.03.012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2015.03.012/}
}
TY  - JOUR
AU  - Bessa, Mário
AU  - Torres, Maria Joana
TI  - The $ {C}^{0}$ general density theorem for geodesic flows
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 545
EP  - 549
VL  - 353
IS  - 6
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2015.03.012/
DO  - 10.1016/j.crma.2015.03.012
LA  - en
ID  - CRMATH_2015__353_6_545_0
ER  - 
%0 Journal Article
%A Bessa, Mário
%A Torres, Maria Joana
%T The $ {C}^{0}$ general density theorem for geodesic flows
%J Comptes Rendus. Mathématique
%D 2015
%P 545-549
%V 353
%N 6
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2015.03.012/
%R 10.1016/j.crma.2015.03.012
%G en
%F CRMATH_2015__353_6_545_0
Bessa, Mário; Torres, Maria Joana. The $ {C}^{0}$ general density theorem for geodesic flows. Comptes Rendus. Mathématique, Tome 353 (2015) no. 6, pp. 545-549. doi : 10.1016/j.crma.2015.03.012. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2015.03.012/

[1] Abraham, R. Bumpy metrics, Proc. Sympos. Pure Math. (Chern, S.S.; Smale, S., eds.), Volume vol. XIV (1970), pp. 1-3

[2] Anosov, D.V. On generic properties of closed geodesics, Math. USSR, Izv., Volume 21 (1983), pp. 1-29

[3] Buhovsky, L.; Seyfaddini, S. Uniqueness of generating Hamiltonians for topological Hamiltonian flows, J. Symplectic Geom., Volume 11 (2013) no. 1, pp. 37-52

[4] Contreras-Barandiarán, G.; Paternain, G.P. Genericity of geodesic flows with positive topological entropy on S2, J. Differ. Geom., Volume 61 (2002) no. 1, pp. 1-49

[5] Daalderop, F.; Fokkink, R. Chaotic homeomorphisms are generic, Topol. Appl., Volume 102 (2000), pp. 297-302

[6] Fort, M.K. Category theorems, Fundam. Math., Volume 42 (1955), pp. 276-288

[7] Coven, E.M.; Madden, J.; Nitecki, Z. A note on generic properties of continuous maps, Ergodic Theory and Dynamical Systems, II, Prog. Math., vol. 21, Birkhäuser, Boston, MA, USA, 1982, pp. 97-101

[8] Hirsch, M.W. Differential Topology, Graduate Texts in Mathematics, vol. 33, Springer, 1976

[9] Hurley, M. On proofs of the C0 general density theorem, Proc. Amer. Math. Soc., Volume 124 (1996) no. 4, pp. 1305-1309

[10] Katok, A.; Hasselblatt, B. Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, 1995

[11] Klingenberg, W.; Takens, F. Generic properties of geodesic flows, Math. Ann., Volume 197 (1972) no. 4, pp. 323-334

[12] Kuratowski, K. Topology, vol. 1, Academic Press, 1966

[13] Müller, S.; Oh, Y.-G. The group of Hamiltonian homeomorphisms and C0-symplectic topology, J. Symplectic Geom., Volume 5 (2007) no. 2, pp. 167-219

[14] Müller, S.; Spaeth, P. Topological contact dynamics III. Uniqueness of the topological Hamiltonian and C0-rigidity of the geodesic flow, 2013 (preprint) | arXiv

[15] Oh, Y.-G. The group of Hamiltonian homeomorphisms and continuous Hamiltonian flows, Symplectic Topology and Measure Preserving Dynamical Systems, Contemp. Math., vol. 512, Amer. Math. Soc., Providence, RI, USA, 2010, pp. 149-177

[16] Palis, J.; de Melo, W. Geometric Theory of Dynamical Systems. An Introduction, Springer-Verlag, New York, Berlin, 1982

[17] Palis, J.; Pugh, C.; Shub, M.; Sullivan, D. Genericity theorems in topological dynamics, Dynamical Systems – Warwick 1974, Lecture Notes in Math., vol. 468, Springer, Berlin, 1975, pp. 241-250

[18] Pugh, C. An improved closing lemma and a general density theorem, Amer. J. Math., Volume 89 (1967) no. 4, pp. 1010-1021

[19] Pugh, C.; Robinson, C. The C1 closing lemma, including Hamiltonians, Ergod. Theory Dyn. Syst., Volume 3 (1983), pp. 261-313

[20] Rademacher, H.-B. On a generic property of geodesic flows, Math. Ann., Volume 298 (1994) no. 1, pp. 101-116

[21] Rifford, L. Closing geodesics in C1 topology, J. Differ. Geom., Volume 91 (2012) no. 3, pp. 361-382

[22] Viterbo, C. On the uniqueness of generating Hamiltonian for continuous limits of Hamiltonians flows, Int. Math. Res. Not. (2006) Art. ID 34028, 9 p.; Erratum to: On the uniqueness of generating Hamiltonian for continuous limits of Hamiltonians flows, Int. Math. Res. Not. (2006), Art. ID 38784, 4 p

Cité par Sources :