Lie algebras/Topology
Dirac families for loop groups as matrix factorizations
[Familles d'opérateurs de Dirac pour les groupes de lacets et factorisations en matrices]
Comptes Rendus. Mathématique, Tome 353 (2015) no. 5, pp. 415-419.

Voir la notice de l'article provenant de la source Numdam

We identify the category of integrable lowest-weight representations of the loop group LG of a compact Lie group G with the category of twisted, conjugation-equivariant curved Fredholm complexes on the group G: namely, the twisted, equivariant matrix factorizations of a super-potential built from the loop rotation action on LG. This lifts the isomorphism of K-groups of [3–5] to an equivalence of categories. The construction uses families of Dirac operators.

On identifie la catégorie des représentations intégrables de plus bas poids du groupe de lacets LG d'un groupe de Lie compact G avec la catégorie des complexes de Fredholm tordus, courbés et équivariants pour conjugaison sur le groupe G : plus précisément, les factorisations en matrices d'un potentiel provenant de la rotation des lacets dans LG. Cette construction relève l'isomorphisme de K-groupes de [3–5] en une équivalence de catégories. La construction fait appel aux familles d'opérateurs de Dirac.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2015.02.011

Freed, Daniel S. 1 ; Teleman, Constantin 2

1 UT Austin, Mathematics Department, RLM 8.100, 2515 Speedway C1200, Austin, TX 78712, USA
2 UC Berkeley, Mathematics Department, 970 Evans Hall #3840, Berkeley, CA 94720, USA
@article{CRMATH_2015__353_5_415_0,
     author = {Freed, Daniel S. and Teleman, Constantin},
     title = {Dirac families for loop groups as matrix factorizations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {415--419},
     publisher = {Elsevier},
     volume = {353},
     number = {5},
     year = {2015},
     doi = {10.1016/j.crma.2015.02.011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2015.02.011/}
}
TY  - JOUR
AU  - Freed, Daniel S.
AU  - Teleman, Constantin
TI  - Dirac families for loop groups as matrix factorizations
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 415
EP  - 419
VL  - 353
IS  - 5
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2015.02.011/
DO  - 10.1016/j.crma.2015.02.011
LA  - en
ID  - CRMATH_2015__353_5_415_0
ER  - 
%0 Journal Article
%A Freed, Daniel S.
%A Teleman, Constantin
%T Dirac families for loop groups as matrix factorizations
%J Comptes Rendus. Mathématique
%D 2015
%P 415-419
%V 353
%N 5
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2015.02.011/
%R 10.1016/j.crma.2015.02.011
%G en
%F CRMATH_2015__353_5_415_0
Freed, Daniel S.; Teleman, Constantin. Dirac families for loop groups as matrix factorizations. Comptes Rendus. Mathématique, Tome 353 (2015) no. 5, pp. 415-419. doi : 10.1016/j.crma.2015.02.011. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2015.02.011/

[1] Baez, J.C.; Stevenson, D.; Crans, A.S.; Schreiber, U. From loop groups to 2-groups, Homology, Homotopy Appl., Volume 9 (2007), pp. 101-135

[2] Freed, D.S.; Hopkins, M.J.; Lurie, J.; Teleman, C. Topological field theories from compact Lie groups, A Celebration of the Mathematical Legacy of Raoul Bott, CRM Proc. Lecture Notes, vol. 50, AMS, 2010, pp. 367-403

[3] Freed, D.S.; Hopkins, M.J.; Teleman, C. Twisted K-theory and loop group representations I, J. Topol., Volume 4 (2011), pp. 737-798

[4] Freed, D.S.; Hopkins, M.J.; Teleman, C. Twisted K-theory and loop group representations II, J. Amer. Math. Soc., Volume 26 (2013), pp. 595-644

[5] Freed, D.S.; Hopkins, M.J.; Teleman, C. Twisted K-theory and loop group representations III, Ann. Math., Volume 174 (2011), pp. 947-1007

[6] Kostant, B. A cubic Dirac operator and the emergence of Euler number multiplets of representations for equal rank subgroups, Duke Math. J., Volume 100 (1999), pp. 447-501

[7] Landweber, G.D. Multiplets of representations and Kostant's Dirac operator for equal rank loop groups, Duke Math. J., Volume 110 (2001), pp. 121-160

[8] Orlov, D. Triangulated categories of singularities and D-branes in Landau–Ginzburg models, Tr. Mat. Inst. Steklova, Volume 246 (2004), pp. 227-248 Algebr. Geom. Metody, Svyazi i Prilozh., 240–262 (Russian) English translation in Proc. Steklov Inst. Math., 246, 2004

[9] Preygel, A. Thom–Sebastiani and duality for matrix factorizations | arXiv

[10] Pressley, A.; Segal, G.B. Loop Groups, Oxford University Press, 1986

[11] Whitehead, J.H.C. On adding relations to homotopy groups, Ann. Math., Volume 42 (1941), pp. 409-428

Cité par Sources :