Voir la notice de l'article provenant de la source Numdam
This paper gives upper bounds for the dimension of the singularity category of a Cohen–Macaulay local ring with an isolated singularity. One of them recovers an upper bound given by Ballard, Favero and Katzarkov in the case of a hypersurface.
Cet article donne des bornes supérieures pour la dimension de la catégorie de singularité d'un anneau local Cohen–Macaulay à singularité isolée. L'une de nos estimations redonne une borne fournie par Ballard, Favero et Katzarkov dans le cas des hypersurfaces.
Dao, Hailong 1 ; Takahashi, Ryo 2, 3
@article{CRMATH_2015__353_4_297_0, author = {Dao, Hailong and Takahashi, Ryo}, title = {Upper bounds for dimensions of singularity categories}, journal = {Comptes Rendus. Math\'ematique}, pages = {297--301}, publisher = {Elsevier}, volume = {353}, number = {4}, year = {2015}, doi = {10.1016/j.crma.2015.01.012}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2015.01.012/} }
TY - JOUR AU - Dao, Hailong AU - Takahashi, Ryo TI - Upper bounds for dimensions of singularity categories JO - Comptes Rendus. Mathématique PY - 2015 SP - 297 EP - 301 VL - 353 IS - 4 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2015.01.012/ DO - 10.1016/j.crma.2015.01.012 LA - en ID - CRMATH_2015__353_4_297_0 ER -
%0 Journal Article %A Dao, Hailong %A Takahashi, Ryo %T Upper bounds for dimensions of singularity categories %J Comptes Rendus. Mathématique %D 2015 %P 297-301 %V 353 %N 4 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2015.01.012/ %R 10.1016/j.crma.2015.01.012 %G en %F CRMATH_2015__353_4_297_0
Dao, Hailong; Takahashi, Ryo. Upper bounds for dimensions of singularity categories. Comptes Rendus. Mathématique, Tome 353 (2015) no. 4, pp. 297-301. doi : 10.1016/j.crma.2015.01.012. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2015.01.012/
[1] Generators and dimensions of derived categories, Commun. Algebra (2015) (in press) | arXiv
[2] Orlov spectra: bounds and gaps, Invent. Math., Volume 189 (2012) no. 2, pp. 359-430
[3] Dimensions of triangulated categories via Koszul objects, Math. Z., Volume 265 (2010) no. 4, pp. 849-864
[4] Generators and representability of functors in commutative and noncommutative geometry, Mosc. Math. J., Volume 3 (2003) no. 1, pp. 1-36 (258)
[5] Cohen–Macaulay Rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, UK, 1998
[6] Maximal Cohen–Macaulay modules and Tate-cohomology over Gorenstein rings, 1986 http://hdl.handle.net/1807/16682 (Preprint)
[7] Ideals in triangulated categories: phantoms, ghosts and skeleta, Adv. Math., Volume 136 (1998) no. 2, pp. 284-339
[8] Rouquier's theorem on representation dimension, Trends in Representation Theory of Algebras and Related Topics, Contemp. Math., vol. 406, 2006, pp. 95-103
[9] Triangulated categories of singularities and D-branes in Landau–Ginzburg models, Proc. Steklov Inst. Math., Volume 246 (2004) no. 3, pp. 227-248
[10] Triangulated categories of singularities, and equivalences between Landau–Ginzburg models, Sb. Math., Volume 197 (2006) no. 11–12, pp. 1827-1840
[11] Derived categories of coherent sheaves and triangulated categories of singularities, Algebra, Arithmetic, and Geometry: In Honor of Yu.I. Manin. Vol. II, Progress in Mathematics, vol. 270, Birkhäuser Boston, Inc., Boston, MA, USA, 2009, pp. 503-531
[12] Formal completions and idempotent completions of triangulated categories of singularities, Adv. Math., Volume 226 (2011) no. 1, pp. 206-217
[13] Dimensions of triangulated categories, J. K-Theory, Volume 1 (2008), pp. 193-256
[14] On the Fitting ideals in free resolutions, Mich. Math. J., Volume 41 (1994) no. 3, pp. 587-608
[15] Cohen–Macaulay Modules over Cohen–Macaulay Rings, London Mathematical Society Lecture Note Series, vol. 146, Cambridge University Press, Cambridge, 1990
Cité par Sources :