Mathematical physics
Integrability of the periodic Kostant–Toda flow on matrix loops of level k
[Intégrabilité du flot périodique de Kostant–Toda sur des boucles de matrices de niveau k]
Comptes Rendus. Mathématique, Tome 353 (2015) no. 4, pp. 363-367.

Voir la notice de l'article provenant de la source Numdam

In this note, we announce results on the Liouville integrability of the periodic Kostant–Toda flow on loops of matrices in sl(n,C) of level k.

Dans cette note, nous annonçons des résultats sur l'intégrabilité du flot périodique de Kostant–Toda sur des boucles de matrices de niveau k dans sl(n,C).

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2015.01.006

Li, Luen-Chau 1 ; Nie, Zhaohu 2

1 Department of Mathematics, Pennsylvania State University, University Park, PA 16802, USA
2 Department of Mathematics and Statistics, Utah State University, Logan, UT 84322-3900, USA
@article{CRMATH_2015__353_4_363_0,
     author = {Li, Luen-Chau and Nie, Zhaohu},
     title = {Integrability of the periodic {Kostant{\textendash}Toda} flow on matrix loops of level \protect\emph{k}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {363--367},
     publisher = {Elsevier},
     volume = {353},
     number = {4},
     year = {2015},
     doi = {10.1016/j.crma.2015.01.006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2015.01.006/}
}
TY  - JOUR
AU  - Li, Luen-Chau
AU  - Nie, Zhaohu
TI  - Integrability of the periodic Kostant–Toda flow on matrix loops of level k
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 363
EP  - 367
VL  - 353
IS  - 4
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2015.01.006/
DO  - 10.1016/j.crma.2015.01.006
LA  - en
ID  - CRMATH_2015__353_4_363_0
ER  - 
%0 Journal Article
%A Li, Luen-Chau
%A Nie, Zhaohu
%T Integrability of the periodic Kostant–Toda flow on matrix loops of level k
%J Comptes Rendus. Mathématique
%D 2015
%P 363-367
%V 353
%N 4
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2015.01.006/
%R 10.1016/j.crma.2015.01.006
%G en
%F CRMATH_2015__353_4_363_0
Li, Luen-Chau; Nie, Zhaohu. Integrability of the periodic Kostant–Toda flow on matrix loops of level k. Comptes Rendus. Mathématique, Tome 353 (2015) no. 4, pp. 363-367. doi : 10.1016/j.crma.2015.01.006. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2015.01.006/

[1] Adler, A. On a trace functional for formal pseudo-differential operators and the symplectic structure of the Korteweg–deVries-type equations, Invent. Math., Volume 50 (1979), pp. 219-248

[2] Adler, A.; van Moerbeke, P.; Vanhaecke, P. Algebraic Integrability, Painleve Geometry and Lie Algebras, Ergebnisse der Mathematik, Springer-Verlag, Berlin, 2004

[3] Baker, H.F. Examples of applications of Newton's polygon to the theory of singular points of algebraic functions, Trans. Cambr. Philos. Soc., Volume 15 (1893), pp. 403-450

[4] Ben Abdeljelil, K. The integrability of the periodic full Kostant–Toda lattice on a simple Lie algebra, J. Lie Theory, Volume 21 (2011), pp. 929-960

[5] Deift, P.; Li, L.C.; Nanda, T.; Tomei, C. The Toda flow on a generic orbit is integrable, Commun. Pure Appl. Math., Volume 39 (1986), pp. 183-232

[6] Deift, P.; Li, L.C.; Tomei, C. Matrix factorizations and integrable systems, Commun. Pure Appl. Math., Volume 42 (1989), pp. 443-521

[7] Ercolani, N.; Flaschka, H.; Singer, S. The geometry of the full Kostant–Toda lattice, Luminy, 1991 (Progr. Math.), Volume vol. 115, Birkhäuser Boston, Boston, MA (1993), pp. 181-225

[8] Flaschka, H. The Toda lattice, II: existence of integrals, Phys. Rev. B, Volume 9 (1974), pp. 1924-1925

[9] Gekhtman, M.; Shapiro, M. Noncommutative and commutative integrability of generic Toda flows in simple Lie algebras, Commun. Pure Appl. Math., Volume 52 (1999), pp. 53-84

[10] Khovanskii, A.G. Newton polyhedra and the genus of complete intersections, Funct. Anal. Appl., Volume 12 (1978), pp. 38-46

[11] Kostant, B. The solution to a generalized Toda lattice and representation theory, Adv. Math., Volume 34 (1979), pp. 195-338

[12] Semenov-Tian-Shansky, M. What is a classical r-matrix?, Funct. Anal. Appl., Volume 17 (1983), pp. 259-272

[13] van Moerbeke, P.; Mumford, D. The spectrum of difference operators and algebraic curves, Acta Math., Volume 143 (1979), pp. 93-154

Cité par Sources :