Voir la notice de l'article provenant de la source Numdam
In this note, we announce results on the Liouville integrability of the periodic Kostant–Toda flow on loops of matrices in of level k.
Dans cette note, nous annonçons des résultats sur l'intégrabilité du flot périodique de Kostant–Toda sur des boucles de matrices de niveau k dans .
Li, Luen-Chau 1 ; Nie, Zhaohu 2
@article{CRMATH_2015__353_4_363_0, author = {Li, Luen-Chau and Nie, Zhaohu}, title = {Integrability of the periodic {Kostant{\textendash}Toda} flow on matrix loops of level \protect\emph{k}}, journal = {Comptes Rendus. Math\'ematique}, pages = {363--367}, publisher = {Elsevier}, volume = {353}, number = {4}, year = {2015}, doi = {10.1016/j.crma.2015.01.006}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2015.01.006/} }
TY - JOUR AU - Li, Luen-Chau AU - Nie, Zhaohu TI - Integrability of the periodic Kostant–Toda flow on matrix loops of level k JO - Comptes Rendus. Mathématique PY - 2015 SP - 363 EP - 367 VL - 353 IS - 4 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2015.01.006/ DO - 10.1016/j.crma.2015.01.006 LA - en ID - CRMATH_2015__353_4_363_0 ER -
%0 Journal Article %A Li, Luen-Chau %A Nie, Zhaohu %T Integrability of the periodic Kostant–Toda flow on matrix loops of level k %J Comptes Rendus. Mathématique %D 2015 %P 363-367 %V 353 %N 4 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2015.01.006/ %R 10.1016/j.crma.2015.01.006 %G en %F CRMATH_2015__353_4_363_0
Li, Luen-Chau; Nie, Zhaohu. Integrability of the periodic Kostant–Toda flow on matrix loops of level k. Comptes Rendus. Mathématique, Tome 353 (2015) no. 4, pp. 363-367. doi : 10.1016/j.crma.2015.01.006. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2015.01.006/
[1] On a trace functional for formal pseudo-differential operators and the symplectic structure of the Korteweg–deVries-type equations, Invent. Math., Volume 50 (1979), pp. 219-248
[2] Algebraic Integrability, Painleve Geometry and Lie Algebras, Ergebnisse der Mathematik, Springer-Verlag, Berlin, 2004
[3] Examples of applications of Newton's polygon to the theory of singular points of algebraic functions, Trans. Cambr. Philos. Soc., Volume 15 (1893), pp. 403-450
[4] The integrability of the periodic full Kostant–Toda lattice on a simple Lie algebra, J. Lie Theory, Volume 21 (2011), pp. 929-960
[5] The Toda flow on a generic orbit is integrable, Commun. Pure Appl. Math., Volume 39 (1986), pp. 183-232
[6] Matrix factorizations and integrable systems, Commun. Pure Appl. Math., Volume 42 (1989), pp. 443-521
[7] The geometry of the full Kostant–Toda lattice, Luminy, 1991 (Progr. Math.), Volume vol. 115, Birkhäuser Boston, Boston, MA (1993), pp. 181-225
[8] The Toda lattice, II: existence of integrals, Phys. Rev. B, Volume 9 (1974), pp. 1924-1925
[9] Noncommutative and commutative integrability of generic Toda flows in simple Lie algebras, Commun. Pure Appl. Math., Volume 52 (1999), pp. 53-84
[10] Newton polyhedra and the genus of complete intersections, Funct. Anal. Appl., Volume 12 (1978), pp. 38-46
[11] The solution to a generalized Toda lattice and representation theory, Adv. Math., Volume 34 (1979), pp. 195-338
[12] What is a classical r-matrix?, Funct. Anal. Appl., Volume 17 (1983), pp. 259-272
[13] The spectrum of difference operators and algebraic curves, Acta Math., Volume 143 (1979), pp. 93-154
Cité par Sources :