Voir la notice de l'article provenant de la source Numdam
In this paper the well-known Bernstein's inequality for complex polynomials is extended to the quaternionic setting. We also show that the Erdős–Lax's inequality does not hold in general, but it works for a particular class of polynomials.
Dans cet article, l'inégalité de Bernstein, bien connue pour les polynômes de , est prouvée pour les polynômes quaternioniques. Nous démontrons que l'inégalité de Erdős–Lax n'est pas valide, en général, mais qu'elle est valide pour un ensemble particulier de polynômes.
Gal, Sorin G. 1 ; Sabadini, Irene 2
@article{CRMATH_2015__353_1_5_0, author = {Gal, Sorin G. and Sabadini, Irene}, title = {On {Bernstein} and {Erd\H{o}s{\textendash}Lax's} inequalities for quaternionic polynomials}, journal = {Comptes Rendus. Math\'ematique}, pages = {5--9}, publisher = {Elsevier}, volume = {353}, number = {1}, year = {2015}, doi = {10.1016/j.crma.2014.10.011}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2014.10.011/} }
TY - JOUR AU - Gal, Sorin G. AU - Sabadini, Irene TI - On Bernstein and Erdős–Lax's inequalities for quaternionic polynomials JO - Comptes Rendus. Mathématique PY - 2015 SP - 5 EP - 9 VL - 353 IS - 1 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2014.10.011/ DO - 10.1016/j.crma.2014.10.011 LA - en ID - CRMATH_2015__353_1_5_0 ER -
%0 Journal Article %A Gal, Sorin G. %A Sabadini, Irene %T On Bernstein and Erdős–Lax's inequalities for quaternionic polynomials %J Comptes Rendus. Mathématique %D 2015 %P 5-9 %V 353 %N 1 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2014.10.011/ %R 10.1016/j.crma.2014.10.011 %G en %F CRMATH_2015__353_1_5_0
Gal, Sorin G.; Sabadini, Irene. On Bernstein and Erdős–Lax's inequalities for quaternionic polynomials. Comptes Rendus. Mathématique, Tome 353 (2015) no. 1, pp. 5-9. doi : 10.1016/j.crma.2014.10.011. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2014.10.011/
[1] S. N. Bernstein, Leçons sur les propriétés extrémales et la meilleure approximation des fonctions analytiques d'une variable reélle, Collection Borel, Paris, 1926.
[2] Noncommutative functional calculus, Theory and Applications of Slice Hyperholomorphic Functions, Progress in Mathematics, vol. 289, Birkhäuser/Springer, Basel AG, Basel, Switzerland, 2011
[3] Inequalities concerning polynomials in the complex domain, Indag. Math., Volume 9 (1947), pp. 591-598
[4] A new theory of regular functions of a quaternionic variable, Adv. Math., Volume 216 (2007), pp. 279-301
[5] On the zeros of polynomials over division rings, Trans. Amer. Math. Soc., Volume 116 (1965), pp. 218-226
[6] A First Course in Noncommutative Rings, Springer-Verlag, New York, 1991
[7] Proof of a conjecture of P. Erdős on the derivative of a polynomial, Bull. Amer. Math. Soc., Volume 50 (1944), pp. 509-513
[8] Equations in quaternions, Amer. Math. Mon., Volume 48 (1941), pp. 654-661
[9] Eine trigonometrische interpolationsformel und einige ungleichungen für polynome, Jahresber. Dtsch. Math.-Ver., Volume 23 (1914), pp. 354-368
[10] The Gauss–Lucas theorem for regular quaternionic polynomials (Sabadini, I.; Sommen, F., eds.), Hypercomplex Analysis and Applications, Trends in Mathematics, Springer, 2011, pp. 275-282
Cité par Sources :