Number theory
Multiple zeta values at the non-positive integers
[Les valeurs de la fonction zêta multiple aux entiers négatifs]
Comptes Rendus. Mathématique, Tome 352 (2014) no. 12, pp. 977-984.

Voir la notice de l'article provenant de la source Numdam

In this paper, we provide an alternative method to calculate the multiple zeta values at non-positive integers by means of Raabe's formula and the Bernoulli numbers.

Dans cet article, nous proposons une autre méthode pour calculer les valeurs de la fonction zêta multiple aux entiers négatifs à l'aide de la formule de Raabe et des nombres de Bernoulli.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.10.001

Sadaoui, Boualem 1

1 Université de Khemis Miliana, Laboratoire LESI, 44225, Khemis Miliana, Algeria
@article{CRMATH_2014__352_12_977_0,
     author = {Sadaoui, Boualem},
     title = {Multiple zeta values at the non-positive integers},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {977--984},
     publisher = {Elsevier},
     volume = {352},
     number = {12},
     year = {2014},
     doi = {10.1016/j.crma.2014.10.001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2014.10.001/}
}
TY  - JOUR
AU  - Sadaoui, Boualem
TI  - Multiple zeta values at the non-positive integers
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 977
EP  - 984
VL  - 352
IS  - 12
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2014.10.001/
DO  - 10.1016/j.crma.2014.10.001
LA  - en
ID  - CRMATH_2014__352_12_977_0
ER  - 
%0 Journal Article
%A Sadaoui, Boualem
%T Multiple zeta values at the non-positive integers
%J Comptes Rendus. Mathématique
%D 2014
%P 977-984
%V 352
%N 12
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2014.10.001/
%R 10.1016/j.crma.2014.10.001
%G en
%F CRMATH_2014__352_12_977_0
Sadaoui, Boualem. Multiple zeta values at the non-positive integers. Comptes Rendus. Mathématique, Tome 352 (2014) no. 12, pp. 977-984. doi : 10.1016/j.crma.2014.10.001. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2014.10.001/

[1] Akiyama, S.; Egami, S.; Tanigawa, Y. Analytic continuation of multiple zeta-functions and their values at non-positive integers, Acta Arith., Volume 98 (2001) no. 2, pp. 107-116

[2] Apostol, T.M. Introduction to Analytic Number Theory, Springer, 1976

[3] Atkinson, F.V. The mean-value of the Riemann zeta function, Acta Math., Volume 81 (1949), pp. 353-376

[4] Borwein, J.M.; Bradley, D.M.; Broadhurst, D.J.; Lisoněk, P. Combinatorial aspects of multiple zeta values, Electron. J. Comb., Volume 5 (1998), pp. 1077-8926

[5] Euler, L. Meditationes circa singulare serierum genus, Novi Commun. Acad. Sci. Petropol., Volume 20 (1775), pp. 140-186 (reprinted in Opera Omnia, Ser. I, vol. 15, B.G. Teubner, Berlin, 1927, pp. 217–267)

[6] Friedman, E.; Pereira, A. Special values of Dirichlet series and zeta integrals, Int. J. Number Theory, Volume 8 (2012) no. 3, pp. 697-714

[7] Friedman, E.; Ruijsenaars, S. Shintani–Barnes zeta and gamma functions, Adv. Math., Volume 187 (2004), pp. 362-395

[8] Granville, A. A decomposition of Riemann's Zeta-function (Motohashi, Y., ed.), Analytic Number Theory, London Mathematical Society Lecture Note Series, vol. 247, Cambridge University Press, 1997, pp. 95-101

[9] Guo, L.; Zhang, B. Renormalization of multiple zeta values, J. Algebra, Volume 319 (2008) no. 9, pp. 3770-3809

[10] Hoffman, M. Multiple harmonic series, Pac. J. Math., Volume 152 (1992), pp. 257-290

[11] Manchon, D.; Paycha, S. Nested sums of symbols and renormalised multiple zeta functions, Int. Math. Res. Not., Volume 24 (2010), pp. 4628-4697

[12] Matsumoto, K. Analytic continuation of multiple zeta functions, Proc. Amer. Math. Soc., Volume 128 (2003), pp. 223-243

[13] Ohno, Y. A generalization of the duality and sum formula on the multiple zeta values, J. Number Theory, Volume 101 (1999), pp. 39-43

[14] Zagier, D. Periods of modular forms, traces of Hecke operators and multiple zeta values, Kyoto, 1992, Volume vol. 843 (1993), pp. 162-170

[15] Zagier, D. Values of zeta functions and their applications (Joseph, A. et al., eds.), First European Congress of Mathematics (Paris, 1992), Vol. II, Birkhäuser, Basel, 1994, pp. 497-512

[16] Zhao, J.Q. Analytic continuation of multiple zeta functions, Proc. Amer. Math. Soc., Volume 128 (2000), pp. 1275-1283

Cité par Sources :