Calculus of variations
A Modica–Mortola approximation for the Steiner Problem
[Une approximation à la Modica–Mortola pour le problème de Steiner]
Comptes Rendus. Mathématique, Tome 352 (2014) no. 5, pp. 451-454.

Voir la notice de l'article provenant de la source Numdam

In this note we present a way to approximate the Steiner Problem by a family of elliptic energies of Modica–Mortola type, with an additional term relying on a weighted geodesic distance which takes care of the connectedness constraint.

Dans cette note, nous présentons une méthode d'approximation du problème de Steiner par une famille de fonctionnelles de type Modica–Mortola, avec un terme additionnel basé sur une distance géodésique à poids, pour prendre en compte la contrainte de connexité.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.03.008

Lemenant, Antoine 1 ; Santambrogio, Filippo 2

1 Université Paris-Diderot, Laboratoire Jacques-Louis-Lions, France
2 Université Paris-Sud, Laboratoire de mathématiques d'Orsay, France
@article{CRMATH_2014__352_5_451_0,
     author = {Lemenant, Antoine and Santambrogio, Filippo},
     title = {A {Modica{\textendash}Mortola} approximation for the {Steiner} {Problem}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {451--454},
     publisher = {Elsevier},
     volume = {352},
     number = {5},
     year = {2014},
     doi = {10.1016/j.crma.2014.03.008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2014.03.008/}
}
TY  - JOUR
AU  - Lemenant, Antoine
AU  - Santambrogio, Filippo
TI  - A Modica–Mortola approximation for the Steiner Problem
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 451
EP  - 454
VL  - 352
IS  - 5
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2014.03.008/
DO  - 10.1016/j.crma.2014.03.008
LA  - en
ID  - CRMATH_2014__352_5_451_0
ER  - 
%0 Journal Article
%A Lemenant, Antoine
%A Santambrogio, Filippo
%T A Modica–Mortola approximation for the Steiner Problem
%J Comptes Rendus. Mathématique
%D 2014
%P 451-454
%V 352
%N 5
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2014.03.008/
%R 10.1016/j.crma.2014.03.008
%G en
%F CRMATH_2014__352_5_451_0
Lemenant, Antoine; Santambrogio, Filippo. A Modica–Mortola approximation for the Steiner Problem. Comptes Rendus. Mathématique, Tome 352 (2014) no. 5, pp. 451-454. doi : 10.1016/j.crma.2014.03.008. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2014.03.008/

[1] Ambrosio, L.; Lemenant, A.; Royer-Carfagni, G. A variational model for plastic slip and its regularization via gamma-convergence, J. Elasticity, Volume 110 (2013) no. 2, pp. 201-235

[2] Ambrosio, L.; Tortorelli, V.M. On the approximation of free discontinuity problems, Boll. Un. Mat. Ital. B (7), Volume 6 (1992) no. 1, pp. 105-123

[3] Benmansour, F.; Carlier, G.; Peyré, G.; Santambrogio, F. Derivatives with respect to metrics and applications: subgradient marching algorithm, Numer. Math., Volume 116 (2010) no. 3, pp. 357-381

[4] M. Bonnivard, A. Lemenant, F. Santambrogio, Approximation of length minimization problems among compact connected sets, preprint available on CVGMT.

[5] Carlier, G.; Jimenez, C.; Santambrogio, F. Optimal transportation with traffic congestion and wardrop equilibria, SIAM J. Control Optim., Volume 47 (2008), pp. 1330-1350

[6] Gilbert, E.N.; Pollak, H.O. Steiner minimal trees, SIAM J. Appl. Math., Volume 16 (1968), pp. 1-29

[7] Karp, R. Reducibility among combinatorial problems, Complexity of Computer Computations, Plenum Press, 1972, pp. 85-103

[8] Dal Maso, G.; Iurlano, F. Fracture models as Γ-limits of damage models, Comm. Pure Appl. Anal., Volume 12 (2013) no. 4, pp. 1657-1686

[9] Modica, L.; Mortola, S. Il limite nella Γ-convergenza di una famiglia di funzionali ellittici, Boll. Un. Mat. Ital. A (5), Volume 14 (1977) no. 3, pp. 526-529

[10] Oudet, É. Approximation of partitions of least perimeter by Γ-convergence: around Kelvin's conjecture, Exp. Math., Volume 20 (2011) no. 3, pp. 260-270

[11] Oudet, É.; Santambrogio, F. A Modica–Mortola approximation for branched transport and applications, Arch. Ration. Mech. Anal., Volume 201 (2011) no. 1, pp. 115-142

[12] Paolini, E.; Stepanov, E. Existence and regularity results for the Steiner problem, Calc. Var. Partial Differential Equations, Volume 46 (2013) no. 3, pp. 837-860

[13] Santambrogio, F. A Modica–Mortola approximation for branched transport, C. R. Acad. Sci. Paris, Ser. I, Volume 348 (2010) no. 15–16, pp. 941-945

[14] Sethian, J.A. Level Set Methods and Fast Marching Methods, Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, 1999

Cité par Sources :

This work has been partially supported by the Agence Nationale de la Recherche, through the project ANR-12-BS01-0014-01 GEOMETRYA, and by The Gaspard Monge Program for Optimization and operations research (PGMO) via the project MACRO.