Voir la notice de l'article provenant de la source Numdam
We propose a theorem that extends the classical Lie approach to the case of fractional partial differential equations (fPDEs) of the Riemann–Liouville type in () dimensions.
Nous proposons un théorème qui generalise la méthode classique de Lie à l'étude d'équations aux derivées partielles fractionnaires de type Riemann–Liouville en () dimensions.
Leo, Rosario Antonio 1 ; Sicuro, Gabriele 2 ; Tempesta, Piergiulio 3, 4
@article{CRMATH_2014__352_3_219_0, author = {Leo, Rosario Antonio and Sicuro, Gabriele and Tempesta, Piergiulio}, title = {A theorem on the existence of symmetries of fractional {PDEs}}, journal = {Comptes Rendus. Math\'ematique}, pages = {219--222}, publisher = {Elsevier}, volume = {352}, number = {3}, year = {2014}, doi = {10.1016/j.crma.2013.11.007}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2013.11.007/} }
TY - JOUR AU - Leo, Rosario Antonio AU - Sicuro, Gabriele AU - Tempesta, Piergiulio TI - A theorem on the existence of symmetries of fractional PDEs JO - Comptes Rendus. Mathématique PY - 2014 SP - 219 EP - 222 VL - 352 IS - 3 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2013.11.007/ DO - 10.1016/j.crma.2013.11.007 LA - en ID - CRMATH_2014__352_3_219_0 ER -
%0 Journal Article %A Leo, Rosario Antonio %A Sicuro, Gabriele %A Tempesta, Piergiulio %T A theorem on the existence of symmetries of fractional PDEs %J Comptes Rendus. Mathématique %D 2014 %P 219-222 %V 352 %N 3 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2013.11.007/ %R 10.1016/j.crma.2013.11.007 %G en %F CRMATH_2014__352_3_219_0
Leo, Rosario Antonio; Sicuro, Gabriele; Tempesta, Piergiulio. A theorem on the existence of symmetries of fractional PDEs. Comptes Rendus. Mathématique, Tome 352 (2014) no. 3, pp. 219-222. doi : 10.1016/j.crma.2013.11.007. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2013.11.007/
[1] Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations, J. Math. Anal. Appl., Volume 227 (1998), pp. 81-97
[2] , Phys. Scr. T (Machado, J.A.T.; Luo, A.C.J.; Barbosa, R.S.; Silva, M.F.; Figueiredo, L.B., eds.) (Group-invariant solutions of fractional differential equations, Nonlinear Science and Complexity), Volume 136, Springer, 2009, pp. 51-58
[3] Wright functions as scale-invariant solutions of the diffusion-wave equation, J. Comput. Appl. Math., Volume 11 (2000), pp. 175-191
[4] Scale-invariant solutions of a partial differential equation of fractional order, Fract. Calc. Appl. Anal., Volume 1 (1998), pp. 63-78
[5] Applications of Lie Groups to Differential Equations, Springer, 1986
[6] Leibniz rule for fractional derivatives generalized and an application to infinite series, SIAM J. Appl. Math., Volume 18 (1970) no. 3, pp. 658-674
[7] Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach Science Publishers, 1993
Cité par Sources :