Mathematical Analysis/Calculus of Variations
3D–2D dimensional reduction for a nonlinear optimal design problem with perimeter penalization
[Réduction dimensionnelle 3D–2D dʼun problème non linéaire dʼoptimisation de forme avec pénalisation sur le périmètre]
Comptes Rendus. Mathématique, Tome 350 (2012) no. 23-24, pp. 1011-1016.

Voir la notice de l'article provenant de la source Numdam

A 3D–2D dimension reduction for a nonlinear optimal design problem with a perimeter penalization is performed in the realm of Γ-convergence, providing an integral representation for the limit functional.

On effectue dans ce travail une réduction dimensionnelle 3D–2D dʼun problème non linéaire dʼoptimisation de forme avec une pénalisation du périmètre. Une représentation intégrale de la fonctionnelle limite est obtenue.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2012.11.005

Carita, Graça 1 ; Zappale, Elvira 2

1 CIMA-UE, Departamento de Matemática, Universidade de Évora, Rua Romão Ramalho, 59 7000-671 Évora, Portugal
2 D.I.IN., Università degli Studi di Salerno, Via Ponte Don Melillo, 84084 Fisciano (SA), Italy
@article{CRMATH_2012__350_23-24_1011_0,
     author = {Carita, Gra\c{c}a and Zappale, Elvira},
     title = {3D{\textendash}2D dimensional reduction for a nonlinear optimal design problem with perimeter penalization},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1011--1016},
     publisher = {Elsevier},
     volume = {350},
     number = {23-24},
     year = {2012},
     doi = {10.1016/j.crma.2012.11.005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2012.11.005/}
}
TY  - JOUR
AU  - Carita, Graça
AU  - Zappale, Elvira
TI  - 3D–2D dimensional reduction for a nonlinear optimal design problem with perimeter penalization
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 1011
EP  - 1016
VL  - 350
IS  - 23-24
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2012.11.005/
DO  - 10.1016/j.crma.2012.11.005
LA  - en
ID  - CRMATH_2012__350_23-24_1011_0
ER  - 
%0 Journal Article
%A Carita, Graça
%A Zappale, Elvira
%T 3D–2D dimensional reduction for a nonlinear optimal design problem with perimeter penalization
%J Comptes Rendus. Mathématique
%D 2012
%P 1011-1016
%V 350
%N 23-24
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2012.11.005/
%R 10.1016/j.crma.2012.11.005
%G en
%F CRMATH_2012__350_23-24_1011_0
Carita, Graça; Zappale, Elvira. 3D–2D dimensional reduction for a nonlinear optimal design problem with perimeter penalization. Comptes Rendus. Mathématique, Tome 350 (2012) no. 23-24, pp. 1011-1016. doi : 10.1016/j.crma.2012.11.005. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2012.11.005/

[1] Allaire, G. Shape Optimization by the Homogenization Method, Springer, Berlin, 2002

[2] Ambrosio, L.; Buttazzo, G. An optimal design problem with perimeter penalization, Calc. Var. Partial Differential Equations, Volume 1 (1993) no. 1, pp. 55-69

[3] Ambrosio, L.; Fusco, N.; Pallara, D. Functions of Bounded Variation and Free Discontinuity Problems, Oxford Math. Monogr., Clarendon Press, Oxford, 2000 (xviii)

[4] Babadjian, J.F.; Francfort, G. Spatial heterogeneity in 3D–2D dimensional reduction, ESAIM Control Optim. Calc. Var., Volume 11 (2005), pp. 139-160

[5] Bocea, M.; Fonseca, I. Equi-integrability results for 3D–2D dimension reduction problems, ESAIM Control Optim. Calc. Var., Volume 7 (2002), pp. 443-470

[6] Bouchitté, G.; Fragalá, I.; Seppecher, P. 3D–2D analysis for the optimal elastic compliance problem, C. R. Acad. Sci. Paris, Ser. I, Volume 345 (2007), pp. 713-718

[7] Bouchitté, G.; Fragalá, I.; Seppecher, P. The optimal compliance problem for thin torsion rods: A 3D–1D analysis leading to Cheeger-type solutions, C. R. Acad. Sci. Paris, Ser. I, Volume 348 (2010), pp. 467-471

[8] G. Bouchitté, I. Fragalá, P. Seppecher, Structural optimization of thin plates: the three dimensional approach, preprint.

[9] Braides, A.; Fonseca, I.; Francfort, G. 3D–2D asymptotic analysis for inhomogeneous thin films, Indiana Univ. Math. J., Volume 49 (2000) no. 4, pp. 1367-1404

[10] M. Carozza, I. Fonseca, A. Passarelli di Napoli, in preparation.

[11] Ciarlet, P. Mathematical Elasticity, vol. 2, Theory of Plates, Stud. Math. Appl., vol. 27, North-Holland, Amsterdam, 1997

[12] Dal Maso, G. An Introduction to Γ-Convergence, Progr. Nonlinear Differential Equations Appl., Birkhäuser Boston, Inc., Boston, MA, 1983

[13] Fonseca, I.; Francfort, G. 3D–2D asymptotic analysis of an optimal design problem for thin films, J. Reine Angew. Math., Volume 505 (1998), pp. 173-202

[14] Larsen, C.J. Regularity in two-dimensional variational problems with perimeter penalties, C. R. Acad. Sci. Paris, Ser. I, Volume 333 (2001), pp. 261-266

[15] Larsen, C.J. Regularity of components in optimal design problems with perimeter penalization, Calc. Var. Partial Differential Equations, Volume 16 (2003) no. 1, pp. 17-29

[16] Le Dret, H.; Raoult, A. The nonlinear membrane model as a variational limit of nonlinear three-dimensional elasticity, J. Math. Pures Appl., Volume 74 (1995), pp. 549-578

[17] Lin, F.H.; Kohn, R.V. Partial regularity for optimal design problems involving both bulk and surface energies, Chin. Ann. Math. Ser. B, Volume 20 (1999) no. 2, pp. 137-158

Cité par Sources :