Géométrie analytique/Topologie
Lʼindice topologique des champs de vecteurs sur les intersections complètes quasi-homogènes
Comptes Rendus. Mathématique, Tome 350 (2012) no. 19-20, pp. 911-916.

Voir la notice de l'article provenant de la source Numdam

Cette note décrit une méthode élémentaire pour calculer lʼindice topologique dʼun champ de vecteurs en une singularité isolée dʼintersection complète quasi-homogène. La méthode est basée sur une variante du lemme de De Rham pour les intersections complètes, qui est utilisée pour calculer lʼindice homologique des champs de vecteurs introduit par X. Gómez-Mont.

In this note an elementary method for computing the topological index of a vector field at a quasihomogeneous isolated complete intersection singularity is described. It is based on a variant of the De Rham lemma for complete intersections, which is used for calculation of the homological index of vectors fields introduced by X. Gómez-Mont.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2012.10.017

Aleksandrov, Alexandre G. 1

1 Institut du contrôle automatique de lʼAcadémie des sciences de Russie, 65, rue Profsoyuznaya, GSP-7, Moscou 117997, Fédération de Russie
@article{CRMATH_2012__350_19-20_911_0,
     author = {Aleksandrov, Alexandre G.},
     title = {L'indice topologique des champs de vecteurs sur les intersections compl\`etes quasi-homog\`enes},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {911--916},
     publisher = {Elsevier},
     volume = {350},
     number = {19-20},
     year = {2012},
     doi = {10.1016/j.crma.2012.10.017},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2012.10.017/}
}
TY  - JOUR
AU  - Aleksandrov, Alexandre G.
TI  - Lʼindice topologique des champs de vecteurs sur les intersections complètes quasi-homogènes
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 911
EP  - 916
VL  - 350
IS  - 19-20
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2012.10.017/
DO  - 10.1016/j.crma.2012.10.017
LA  - fr
ID  - CRMATH_2012__350_19-20_911_0
ER  - 
%0 Journal Article
%A Aleksandrov, Alexandre G.
%T Lʼindice topologique des champs de vecteurs sur les intersections complètes quasi-homogènes
%J Comptes Rendus. Mathématique
%D 2012
%P 911-916
%V 350
%N 19-20
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2012.10.017/
%R 10.1016/j.crma.2012.10.017
%G fr
%F CRMATH_2012__350_19-20_911_0
Aleksandrov, Alexandre G. Lʼindice topologique des champs de vecteurs sur les intersections complètes quasi-homogènes. Comptes Rendus. Mathématique, Tome 350 (2012) no. 19-20, pp. 911-916. doi : 10.1016/j.crma.2012.10.017. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2012.10.017/

[1] Aleksandrov, A.G. The de Rham complex of a quasihomogeneous complete intersection, Funct. Anal. Appl., Volume 17 (1983) no. 1, pp. 48-49

[2] Aleksandrov, A.G. Cohomology of a quasihomogeneous complete intersection, Math. USSR Izv., Volume 26 (1986), pp. 437-477

[3] Aleksandrov, A.G. On the De Rham complex of nonisolated singularities, Funct. Anal. Appl., Volume 22 (1988) no. 2, pp. 131-133

[4] Aleksandrov, A.G. Vector fields on a complete intersection, Funct. Anal. Appl., Volume 25 (1991) no. 4, pp. 283-284

[5] Aleksandrov, A.G. The index of vector fields and logarithmic differential forms, Funct. Anal. Appl., Volume 39 (2005) no. 4, pp. 245-255

[6] Barlet, D. Le faisceau ωX sur un espace analytique X de dimension pure, Lecture Notes in Math., vol. 670, Springer-Verlag, 1978, pp. 187-204

[7] Graf von Bothmer, H.-Ch.; Ebeling, W.; Gómez-Mont, X. An algebraic formula for the index of a vector field on an isolated complete intersection singularity, Ann. Inst. Fourier (Grenoble), Volume 58 (2008) no. 5, pp. 1761-1783

[8] Danilov, V.I. Geometry of toric varieties, Russian Math. Surveys, Volume 33 (1978) no. 2, pp. 97-154 translation from Uspekhi Mat. Nauk, 33, 2(200), 1978, pp. 85-134

[9] Giraldo, L.; Gómez-Mont, X.; Mardešić, P. On the index of vector fields tangent to hypersurfaces with non–isolated singularities, J. Lond. Math. Soc. (2), Volume 65 (2002) no. 2, pp. 418-438

[10] Gómez-Mont, X. An algebraic formula for the index of a vector field on a hypersurface with an isolated singularity, J. Algebraic Geom., Volume 7 (1998), pp. 731-752

[11] Gómez-Mont, X.; Seade, J.; Verjovski, A. The index of a holomorphic flow with an isolated singularity, Math. Ann., Volume 291 (1991), pp. 737-751

[12] Greuel, G.-M. Der Gauß–Manin–Zusammenhang isolierter Singularitäten von vollständigen Durchscnitten, Math. Ann., Volume 214 (1975) no. 1, pp. 235-266

[13] Greuel, G.-M.; Hamm, H. Invarianten quasihomogener vollständiger Durchschnitte, Invent. Math., Volume 49 (1978) no. 1, pp. 67-86

[14] Grothendieck, A. Local Cohomology, Lecture Notes in Math., vol. 41, Springer-Verlag, Berlin–Heidelberg–New York, 1967

[15] Klehn, O. Real and complex indices of vector fields on complete intersection curves with isolated singularity, Compos. Math., Volume 141 (2005), pp. 525-540

[16] Kushnirenko, A.G. Newton polyhedron and Milnor numbers, Funct. Anal. Appl., Volume 9 (1975), pp. 71-72

[17] Lebelt, K. Torsion äußerer Potenzen von Moduln der homologischen Dimension 1, Math. Ann., Volume 211 (1974) no. 1, pp. 183-197

[18] Lehmann, D.; Soarès, M.; Suwa, T. On the index of a holomorphic vector field tangent to a singular variety, Bol. Soc. Bras. Mat., Volume 26 (1995), pp. 183-199

[19] Lehmann, D.; Suwa, T. Residues of holomorphic vector fields on singular varieties (Mozo Fernández, J., ed.), Ecuaciones diferenciales, Singularidades, Universidad de Valladolid, 1997, pp. 159-182

[20] Naruki, I. Some remarks on isolated singularities and their application to algebraic manifolds, Publ. RIMS Kyoto Univ., Volume 13 (1977), pp. 17-46

Cité par Sources :