Differential Geometry/Mathematical Physics
Asymptotic flexibility of globally hyperbolic manifolds
[Flexibilité asymptotique des varietées globalment hyperboliques]
Comptes Rendus. Mathématique, Tome 350 (2012) no. 7-8, pp. 421-423.

Voir la notice de l'article provenant de la source Numdam

In this short Note, a question of patching together globally hyperbolic manifolds is addressed which appeared in the context of the construction of Hadamard states.

Dans cette Note, on regarde un problème de collage de deux varietées globalment hyperboliques qui surgit dans le contexte de la construction des états de Hadamard.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2012.03.015

Müller, Olaf 1

1 Fakultät für Mathematik, Universität Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
@article{CRMATH_2012__350_7-8_421_0,
     author = {M\"uller, Olaf},
     title = {Asymptotic flexibility of globally hyperbolic manifolds},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {421--423},
     publisher = {Elsevier},
     volume = {350},
     number = {7-8},
     year = {2012},
     doi = {10.1016/j.crma.2012.03.015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2012.03.015/}
}
TY  - JOUR
AU  - Müller, Olaf
TI  - Asymptotic flexibility of globally hyperbolic manifolds
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 421
EP  - 423
VL  - 350
IS  - 7-8
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2012.03.015/
DO  - 10.1016/j.crma.2012.03.015
LA  - en
ID  - CRMATH_2012__350_7-8_421_0
ER  - 
%0 Journal Article
%A Müller, Olaf
%T Asymptotic flexibility of globally hyperbolic manifolds
%J Comptes Rendus. Mathématique
%D 2012
%P 421-423
%V 350
%N 7-8
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2012.03.015/
%R 10.1016/j.crma.2012.03.015
%G en
%F CRMATH_2012__350_7-8_421_0
Müller, Olaf. Asymptotic flexibility of globally hyperbolic manifolds. Comptes Rendus. Mathématique, Tome 350 (2012) no. 7-8, pp. 421-423. doi : 10.1016/j.crma.2012.03.015. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2012.03.015/

[1] Bernal, Antonio; Sánchez, Miguel On smooth Cauchy hypersurfaces and Gerochʼs splitting theorem, Communications in Mathematical Physics, Volume 243 (2003), pp. 461-470

[2] Bernal, Antonio; Sánchez, Miguel Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes, Communications in Mathematical Physics, Volume 257 (2005), pp. 43-50

[3] Radzikowski, M.J. Micro-local approach to the Hadamard condition in quantum field theory on curved space–time, Communications in Mathematical Physics, Volume 179 (1996) no. 3, pp. 529-553

[4] Sánchez, M.; Müller, O. Lorentzian manifolds isometrically embeddable in Ln, Transactions of the American Mathematical Society, Volume 363 (2011), pp. 5367-5379

[5] Verch, R. Nuclearity, split property, and duality for the Klein–Gordon field in curved spacetime, Letters in Mathematical Physics, Volume 29 (1993), pp. 297-310

Cité par Sources :