Voir la notice de l'article provenant de la source Numdam
It is proved that a Randers metric on a manifold of dimension is projective if and only if the Lie algebra of projective vector fields has (locally) dimension . This can be regarded as an analogue of the corresponding result in Riemannian geometry.
On démontre quʼune métrique de Randers sur une variété de dimension est projective si et seulement si lʼalgèbre de Lie des champs de vecteurs projectifs est (localement) de dimension . Ceci peut être considéré comme un analogue du résultat correspondant en géométrie riemannienne.
Rafie-Rad, Mehdi 1, 2 ; Rezaei, Bahman 3
@article{CRMATH_2012__350_5-6_281_0, author = {Rafie-Rad, Mehdi and Rezaei, Bahman}, title = {On the projective {Randers} metrics}, journal = {Comptes Rendus. Math\'ematique}, pages = {281--283}, publisher = {Elsevier}, volume = {350}, number = {5-6}, year = {2012}, doi = {10.1016/j.crma.2012.02.010}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2012.02.010/} }
TY - JOUR AU - Rafie-Rad, Mehdi AU - Rezaei, Bahman TI - On the projective Randers metrics JO - Comptes Rendus. Mathématique PY - 2012 SP - 281 EP - 283 VL - 350 IS - 5-6 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2012.02.010/ DO - 10.1016/j.crma.2012.02.010 LA - en ID - CRMATH_2012__350_5-6_281_0 ER -
%0 Journal Article %A Rafie-Rad, Mehdi %A Rezaei, Bahman %T On the projective Randers metrics %J Comptes Rendus. Mathématique %D 2012 %P 281-283 %V 350 %N 5-6 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2012.02.010/ %R 10.1016/j.crma.2012.02.010 %G en %F CRMATH_2012__350_5-6_281_0
Rafie-Rad, Mehdi; Rezaei, Bahman. On the projective Randers metrics. Comptes Rendus. Mathématique, Tome 350 (2012) no. 5-6, pp. 281-283. doi : 10.1016/j.crma.2012.02.010. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2012.02.010/
[1] Champs de vecteurs projectifs sur le fibré unitaire, J. Math. Pures Appl., Volume 65 (1986), pp. 47-79
[2] Finsler metrics of constant positive curvature on the Lie group , J. Lond. Math. Soc., Volume 66 (2002), pp. 453-467
[3] On the flag curvature of Finsler metrics of scalar curvature, J. Lond. Math. Soc., Volume 68 (2003), pp. 762-780
[4] Geometric explanation of Beltrami theorem, Int. J. Geom. Methods Mod. Phys., Volume 3 (2006) no. 3, pp. 623-629
[5] On the dimension of the group of projective transformations of closed Randers and Riemannian manifolds, SIGMA, Volume 8 (2012), p. 007 (4 pages)
[6] A new quantity in Finsler geometry, C. R. Acad. Sci. Paris, Ser. I, Volume 349 (2011) no. 1–2, pp. 81-83
[7] Some new characterizations of projective Randers metrics with constant S-curvature, J. Geom. Phys., Volume 6 (2012) no. 2, pp. 272-278
[8] Special projective algebra Randers metrics of constant S-curvature, Int. J. Geom. Methods Mod. Phys., Volume 9 (2012) no. 4
[9] On the projective algebra of Randers metrics of constant flag curvature, SIGMA, Volume 7 (2011), p. 085 (12 pages)
[10] On an asymmetric metric in the four-space of general relativity, Phys. Rev., Volume 59 (1941), pp. 195-199
[11] Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishers, 2001
Cité par Sources :