Algebraic Geometry
On Euler characteristics for large Kronecker quivers
[Sur la caractéristique dʼEuler de lʼespace des représentations stables dʼun grand carquois de Kronecker]
Comptes Rendus. Mathématique, Tome 350 (2012) no. 5-6, pp. 273-276.

Voir la notice de l'article provenant de la source Numdam

We study Euler characteristics of moduli spaces of stable representations of m-Kronecker quivers for m0. In particular, we study an asymptotic log formula of Euler characteristics and a normalized asymptotic log formula of Euler characteristic, motivated by so-called Douglas conjecture.

Nous étudions la caractéristique dʼEuler des espaces de modules de représentations stables des m-carquois de Kronecker pour m grand. En particulier, nous étudions une formule log asymptotique pour la caractéristique dʼEuler et une formule asymptotique normalisée, motivées par la conjecture de Douglas.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2012.02.008

Okada, So 1

1 Research Institute for Mathematical Sciences, Kyoto University, 606-8502, Japan
@article{CRMATH_2012__350_5-6_273_0,
     author = {Okada, So},
     title = {On {Euler} characteristics for large {Kronecker} quivers},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {273--276},
     publisher = {Elsevier},
     volume = {350},
     number = {5-6},
     year = {2012},
     doi = {10.1016/j.crma.2012.02.008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2012.02.008/}
}
TY  - JOUR
AU  - Okada, So
TI  - On Euler characteristics for large Kronecker quivers
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 273
EP  - 276
VL  - 350
IS  - 5-6
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2012.02.008/
DO  - 10.1016/j.crma.2012.02.008
LA  - en
ID  - CRMATH_2012__350_5-6_273_0
ER  - 
%0 Journal Article
%A Okada, So
%T On Euler characteristics for large Kronecker quivers
%J Comptes Rendus. Mathématique
%D 2012
%P 273-276
%V 350
%N 5-6
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2012.02.008/
%R 10.1016/j.crma.2012.02.008
%G en
%F CRMATH_2012__350_5-6_273_0
Okada, So. On Euler characteristics for large Kronecker quivers. Comptes Rendus. Mathématique, Tome 350 (2012) no. 5-6, pp. 273-276. doi : 10.1016/j.crma.2012.02.008. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2012.02.008/

[1] Bridgeland, T. Stability conditions on triangulated categories, Ann. of Math. (2), Volume 166 (2007) no. 2, pp. 317-345

[2] Denef, F. Supergravity flows and D-brane stability, J. High Energy Phys., Volume 0008 (2000), p. 50 (40 pp)

[3] Denef, F. Quantum quivers and Hall/hole halos, J. High Energy Phys., Volume 0210 (2002), p. 023 (42 pp)

[4] Gross, M.; Pandharipande, R. Quivers, curves, and the tropical vertex, Port. Math., Volume 67 (2010) no. 2, pp. 211-259

[5] King, A.D. Moduli of representations of finite-dimensional algebras, Quart. J. Math. Oxford Ser. (2), Volume 45 (1994) no. 180, pp. 515-530

[6] Kontsevich, M.; Soibelman, Y. Stability structures, motivic Donaldson–Thomas invariants and cluster transformations | arXiv

[7] Manschot, J.; Pioline, B.; Sen, A. Wall-crossing from Boltzmann black hole halos | arXiv

[8] Manschot, J.; Pioline, B.; Sen, A. A fixed point formula for the index of multi-centered N=2 black holes | arXiv

[9] Pioline, B. Four ways across the wall | arXiv

[10] Reineke, M. The Harder–Narasimhan system in quantum groups and cohomology of quiver moduli, Invent. Math., Volume 152 (2003) no. 2, pp. 349-368

[11] Reineke, M. Moduli of representations of quivers, Trends in Representation Theory of Algebras and Related Topics, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2008, pp. 589-637

[12] Reineke, M. Poisson automorphisms and quiver moduli, J. Inst. Math. Jussieu, Volume 9 (2010) no. 3, pp. 653-667

[13] Reineke, M.; Stoppa, J.; Weist, T. MPS degeneration formula for quiver moduli and refined GW/Kronecker correspondence | arXiv

[14] Sen, A. Equivalence of three wall crossing formulae | arXiv

[15] Stoppa, J. Universal covers and the GW/Kronecker correspondence, Commun. Number Theory Phys., Volume 5 (2011) no. 2, pp. 353-396

[16] Weist, T. Localization in quiver moduli spaces | arXiv

Cité par Sources :