Differential Geometry
Lower bounds for the scalar curvatures of noncompact gradient Ricci solitons
[Minorer des la courbures scalaires de solitons de Ricci gradient non compact]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 23-24, pp. 1265-1267.

Voir la notice de l'article provenant de la source Numdam

We show that recent work of Ni and Wilking (in preparation) [11] yields the result that a noncompact nonflat Ricci shrinker has at most quadratic scalar curvature decay. The examples of noncompact Kähler–Ricci shrinkers by Feldman, Ilmanen, and Knopf (2003) [7] exhibit that this result is sharp. We also prove a similar result for certain noncompact steady gradient Ricci solitons.

Nous montrons que les travaux récents de Ni et Wilking (in preparation) [11] donne le résultat dʼun non plate soliton contractant de type gradient non compact a tout au plus sa courbure scalaire avec décroissance quadratique. Les exemples de solitons de Kähler–Ricci contractant de type non compact par Feldman, Ilmanen, et Knopf (2003) [7] montre que ce résultat est optimales. Nous prouvons aussi un résultat similaire pour certains solitons de Ricci stable de type gradient non compact.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.11.004

Chow, Bennett 1 ; Lu, Peng 2 ; Yang, Bo 1

1 Department of Mathematics, University of California, San Diego, La Jolla, CA 92093, United States
2 Department of Mathematics, University of Oregon, Eugene, OR 97403, United States
@article{CRMATH_2011__349_23-24_1265_0,
     author = {Chow, Bennett and Lu, Peng and Yang, Bo},
     title = {Lower bounds for the scalar curvatures of noncompact gradient {Ricci} solitons},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1265--1267},
     publisher = {Elsevier},
     volume = {349},
     number = {23-24},
     year = {2011},
     doi = {10.1016/j.crma.2011.11.004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2011.11.004/}
}
TY  - JOUR
AU  - Chow, Bennett
AU  - Lu, Peng
AU  - Yang, Bo
TI  - Lower bounds for the scalar curvatures of noncompact gradient Ricci solitons
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 1265
EP  - 1267
VL  - 349
IS  - 23-24
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2011.11.004/
DO  - 10.1016/j.crma.2011.11.004
LA  - en
ID  - CRMATH_2011__349_23-24_1265_0
ER  - 
%0 Journal Article
%A Chow, Bennett
%A Lu, Peng
%A Yang, Bo
%T Lower bounds for the scalar curvatures of noncompact gradient Ricci solitons
%J Comptes Rendus. Mathématique
%D 2011
%P 1265-1267
%V 349
%N 23-24
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2011.11.004/
%R 10.1016/j.crma.2011.11.004
%G en
%F CRMATH_2011__349_23-24_1265_0
Chow, Bennett; Lu, Peng; Yang, Bo. Lower bounds for the scalar curvatures of noncompact gradient Ricci solitons. Comptes Rendus. Mathématique, Tome 349 (2011) no. 23-24, pp. 1265-1267. doi : 10.1016/j.crma.2011.11.004. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2011.11.004/

[1] Brendle, Simon Uniqueness of gradient Ricci solitons, Mathematical Research Letters, Volume 18 (2011), pp. 531-538

[2] Huai-Dong Cao, Qiang Chen, On locally conformally flat gradient steady Ricci solitons, Transactions of the American Mathematical Society, in press.

[3] Cao, Huai-Dong; Zhou, De-Tang On complete gradient shrinking Ricci solitons, Journal of Differential Geometry, Volume 85 (2010), pp. 175-185

[4] Chen, Bing-Long Strong uniqueness of the Ricci flow, Journal of Differential Geometry, Volume 82 (2009), pp. 363-382

[5] Eminenti, Manolo; La Nave, Gabriele; Mantegazza, Carlo Ricci solitons: the equation point of view, Manuscripta Mathematica, Volume 127 (2008), pp. 345-367

[6] Fang, Fu-Quan; Man, Jian-Wen; Zhang, Zhen-Lei Complete gradient shrinking Ricci solitons have finite topological type, Comptes Rendus Mathematique Academie des Sciences Paris, Volume 346 (2008), pp. 653-656

[7] Feldman, Mikhail; Ilmanen, Tom; Knopf, Dan Rotationally symmetric shrinking and expanding gradient Kähler–Ricci solitons, Journal of Differential Geometry, Volume 65 (2003), pp. 169-209

[8] Guo, Hongxin Area growth rate of the level surface of the potential function on the 3-dimensional steady Ricci soliton, Proceedings of the American Mathematical Society, Volume 137 (2009), pp. 2093-2097

[9] Hamilton, Richard S. The formation of singularities in the Ricci flow, Surveys in Differential Geometry, vol. II, International Press, Cambridge, MA, 1995, pp. 7-136

[10] Haslhofer, Robert; Müller, Reto A compactness theorem for complete Ricci shrinkers, Geometric and Functional Analysis, Volume 21 (2011) no. 5, pp. 1091-1116

[11] Lei Ni, Burkhard Wilking, in preparation.

[12] Ovidiu Munteanu, Natasa Sesum, On gradient Ricci solitons, , Journal of Geometric Analysis, in press. | arXiv

[13] Pigola, Stefano; Rimoldi, Michele; Setti, Alberto G. Remarks on non-compact gradient Ricci solitons, Mathematische Zeitschrift, Volume 268 (2011) no. 3–4, pp. 777-790 | DOI

[14] Wu, Peng Remarks on gradient steady Ricci solitons | arXiv

[15] Zhang, Shijin On a sharp volume estimate for gradient Ricci solitons with scalar curvature bounded below, Acta Mathematica Sinica, Volume 27 (2011) no. 5, pp. 871-882

Cité par Sources :