Voir la notice de l'article provenant de la source Numdam
We propose and analyze a mathematical model for wave propagation in infinite trees with self-similar structure at infinity. The emphasis is put on the construction and approximation of transparent boundary conditions.
Nous proposons et analysons un modèle mathématique pour la propagation dʼondes dans des arbres infinis qui sont auto-similaires à lʼinfini. Lʼaccent est mis sur la construction et lʼapproximation de conditions aux limites transparentes.
Joly, Patrick 1 ; Semin, Adrien 2
@article{CRMATH_2011__349_19-20_1047_0, author = {Joly, Patrick and Semin, Adrien}, title = {Mathematical and numerical modeling of wave propagation in fractal trees}, journal = {Comptes Rendus. Math\'ematique}, pages = {1047--1051}, publisher = {Elsevier}, volume = {349}, number = {19-20}, year = {2011}, doi = {10.1016/j.crma.2011.09.008}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2011.09.008/} }
TY - JOUR AU - Joly, Patrick AU - Semin, Adrien TI - Mathematical and numerical modeling of wave propagation in fractal trees JO - Comptes Rendus. Mathématique PY - 2011 SP - 1047 EP - 1051 VL - 349 IS - 19-20 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2011.09.008/ DO - 10.1016/j.crma.2011.09.008 LA - en ID - CRMATH_2011__349_19-20_1047_0 ER -
%0 Journal Article %A Joly, Patrick %A Semin, Adrien %T Mathematical and numerical modeling of wave propagation in fractal trees %J Comptes Rendus. Mathématique %D 2011 %P 1047-1051 %V 349 %N 19-20 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2011.09.008/ %R 10.1016/j.crma.2011.09.008 %G en %F CRMATH_2011__349_19-20_1047_0
Joly, Patrick; Semin, Adrien. Mathematical and numerical modeling of wave propagation in fractal trees. Comptes Rendus. Mathématique, Tome 349 (2011) no. 19-20, pp. 1047-1051. doi : 10.1016/j.crma.2011.09.008. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2011.09.008/
[1] Transparent boundary conditions for the Helmholtz equation in some ramified domains with a fractal boundary, J. Comput. Phys., Volume 220 (2007) no. 2, pp. 712-739
[2] Construction and analysis of improved Kirchoff conditions for acoustic wave propagation in a junction of thin slots, ESAIM Proc., Volume 25 (2008), pp. 44-67
[3] Graph models for waves in thin structures, Waves Random Media, Volume 12 (2002) no. 4, p. R1-R24
[4] Trace theorems for trees, application for the human lung, Netw. Heterog. Media, Volume 4 (2009) no. 3, pp. 469-500
[5] Morphometry of the Human Lung, Springer Verlag/Academic Press, Berlin/New York, 1963
Cité par Sources :