Voir la notice de l'article provenant de la source Numdam
We introduce a class of action integrals defined over probability-measure-valued path space. Minimal action exists in this context and gives weak solution to a compressible Euler equation. We prove that the Hamilton–Jacobi PDE associated with such variational formulation of Euler equation is well posed in viscosity solution sense.
Nous introduisons une classe dʼintégrales dʼaction définies sur lʼespace des chemins à valeurs mesures de probabilité. Dans ce contexte lʼaction minimale existe et donne une solution faible dʼune équation dʼEuler compressible. Nous montrons que lʼéquation de Hamilton Jacobi associʼee à la formulation variationnelle de lʼéquation dʼEuler est bien posée dans le sens des solutions de viscosité.
Feng, Jin 1
@article{CRMATH_2011__349_17-18_973_0, author = {Feng, Jin}, title = {A {Hamilton{\textendash}Jacobi} {PDE} in the space of measures and its associated compressible {Euler} equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {973--976}, publisher = {Elsevier}, volume = {349}, number = {17-18}, year = {2011}, doi = {10.1016/j.crma.2011.08.013}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2011.08.013/} }
TY - JOUR AU - Feng, Jin TI - A Hamilton–Jacobi PDE in the space of measures and its associated compressible Euler equations JO - Comptes Rendus. Mathématique PY - 2011 SP - 973 EP - 976 VL - 349 IS - 17-18 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2011.08.013/ DO - 10.1016/j.crma.2011.08.013 LA - en ID - CRMATH_2011__349_17-18_973_0 ER -
%0 Journal Article %A Feng, Jin %T A Hamilton–Jacobi PDE in the space of measures and its associated compressible Euler equations %J Comptes Rendus. Mathématique %D 2011 %P 973-976 %V 349 %N 17-18 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2011.08.013/ %R 10.1016/j.crma.2011.08.013 %G en %F CRMATH_2011__349_17-18_973_0
Feng, Jin. A Hamilton–Jacobi PDE in the space of measures and its associated compressible Euler equations. Comptes Rendus. Mathématique, Tome 349 (2011) no. 17-18, pp. 973-976. doi : 10.1016/j.crma.2011.08.013. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2011.08.013/
[1] Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2005
[2] A comparison principle for Hamilton–Jacobi equations related to controlled gradient flows in infinite dimensions, Arch. Ration. Mech. Anal., Volume 192 (2009) no. 2, pp. 275-310
[3] Large Deviation for Stochastic Processes, Mathematical Surveys and Monographs, vol. 131, American Mathematical Society, Providence, RI, 2006
[4] J. Feng, T. Nguyen, Hamilton–Jacobi equations in space of measures associated with a system of conservation laws, Preprint, 2010.
[5] Mean field games, Japanese J. Math., Volume 2 (2007) no. 1, pp. 229-260
[6] Optimal Transport. Old and New, Fundamental Principles of Mathematical Sciences, vol. 338, Springer-Verlag, Berlin, 2009
Cité par Sources :