Voir la notice de l'article provenant de la source Numdam
We classify holomorphic Cartan geometries on every compact complex surface which contains a rational curve.
Dans cette Note nous classifions les géométries de Cartan holomorphes sur toute surface complexe compacte contenant une courbe rationnelle.
McKay, Benjamin 1
@article{CRMATH_2011__349_15-16_893_0, author = {McKay, Benjamin}, title = {Holomorphic {Cartan} geometries on uniruled surfaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {893--896}, publisher = {Elsevier}, volume = {349}, number = {15-16}, year = {2011}, doi = {10.1016/j.crma.2011.07.021}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2011.07.021/} }
TY - JOUR AU - McKay, Benjamin TI - Holomorphic Cartan geometries on uniruled surfaces JO - Comptes Rendus. Mathématique PY - 2011 SP - 893 EP - 896 VL - 349 IS - 15-16 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2011.07.021/ DO - 10.1016/j.crma.2011.07.021 LA - en ID - CRMATH_2011__349_15-16_893_0 ER -
%0 Journal Article %A McKay, Benjamin %T Holomorphic Cartan geometries on uniruled surfaces %J Comptes Rendus. Mathématique %D 2011 %P 893-896 %V 349 %N 15-16 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2011.07.021/ %R 10.1016/j.crma.2011.07.021 %G en %F CRMATH_2011__349_15-16_893_0
McKay, Benjamin. Holomorphic Cartan geometries on uniruled surfaces. Comptes Rendus. Mathématique, Tome 349 (2011) no. 15-16, pp. 893-896. doi : 10.1016/j.crma.2011.07.021. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2011.07.021/
[1] Holomorphic Cartan geometries and rational curves, May 2010 | arXiv
[2] Locally homogeneous geometric manifolds (Bhatia, Rajendra, ed.), Proceedings of the International Congress of Mathematicians, Hyderabad, vol. 2, Hindawi, 2010, pp. 717-744
[3] The classification of homogeneous surfaces, Expo. Math., Volume 4 (1986) no. 4, pp. 289-334
[4] The extensibility of local Lie groups of transformations and groups on surfaces, Ann. of Math. (2), Volume 52 (1950), pp. 606-636 MR 0048464 (14,18d)
[5] Equivalence, Invariants, and Symmetry, Cambridge University Press, Cambridge, 1995 (MR 96i:58005)
[6] Differential Geometry, Graduate Texts in Mathematics, vol. 166, Springer-Verlag, New York, 1997 (Cartanʼs generalization of Kleinʼs Erlangen program, with a foreword by S.S. Chern), MR MR1453120 (98m:53033)
Cité par Sources :