Probability Theory/Numerical Analysis
Numerical solutions of backward stochastic differential equations: A finite transposition method
[Solutions numériques des équations différentielles stochastiques rétrogrades : « A finite transposition method »]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 15-16, pp. 901-903.

Voir la notice de l'article provenant de la source Numdam

In this Note, we present a new numerical method for solving backward stochastic differential equations. Our method can be viewed as an analogue of the classical finite element method solving deterministic partial differential equations.

Dans cette Note, nous présentons une nouvelle méthode pour résoudre numériquement les équations différentielles stochastiques rétrogrades. Notre méthode ressemble à la méthode des éléments finis qui permet de résoudre numériquement les équations aux dérivées partielles déterministes.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.07.011

Wang, Penghui 1 ; Zhang, Xu 2, 3

1 School of Mathematics, Shandong University, Jinan 250100, China
2 Key Laboratory of Systems and Control, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
3 Yangtze Center of Mathematics, Sichuan University, Chengdu 610064, China
@article{CRMATH_2011__349_15-16_901_0,
     author = {Wang, Penghui and Zhang, Xu},
     title = {Numerical solutions of backward stochastic differential equations: {A} finite transposition method},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {901--903},
     publisher = {Elsevier},
     volume = {349},
     number = {15-16},
     year = {2011},
     doi = {10.1016/j.crma.2011.07.011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2011.07.011/}
}
TY  - JOUR
AU  - Wang, Penghui
AU  - Zhang, Xu
TI  - Numerical solutions of backward stochastic differential equations: A finite transposition method
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 901
EP  - 903
VL  - 349
IS  - 15-16
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2011.07.011/
DO  - 10.1016/j.crma.2011.07.011
LA  - en
ID  - CRMATH_2011__349_15-16_901_0
ER  - 
%0 Journal Article
%A Wang, Penghui
%A Zhang, Xu
%T Numerical solutions of backward stochastic differential equations: A finite transposition method
%J Comptes Rendus. Mathématique
%D 2011
%P 901-903
%V 349
%N 15-16
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2011.07.011/
%R 10.1016/j.crma.2011.07.011
%G en
%F CRMATH_2011__349_15-16_901_0
Wang, Penghui; Zhang, Xu. Numerical solutions of backward stochastic differential equations: A finite transposition method. Comptes Rendus. Mathématique, Tome 349 (2011) no. 15-16, pp. 901-903. doi : 10.1016/j.crma.2011.07.011. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2011.07.011/

[1] J.-M. Bismut, Analyse convexe et probabilitiés, PhD thesis, Faculté des Sciences de Paris, Paris, France, 1973.

[2] Bouchard, B.; Elie, R.; Touzi, N. Discrete-time approximation of BSDEs and probabilistic schemes for fully nonlinear PDEs, Radon Ser. Comp. Appl. Math., Volume 8 (2009), pp. 1-34

[3] Ciarlet, P.G. The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978

[4] Ghanem, R.; Spanos, P. Stochastic Finite Elements: A Spectral Approach, Springer-Verlag, 1991

[5] Kleiber, M.; Hien, T.D. The Stochastic Finite Element Method: Basic Perturbation Technique and Computer Implementation, John Wiley, 1992

[6] Lü, Q.; Zhang, X. Well-posedness of backward stochastic differential equations with general filtration (preprint, see) | arXiv

[7] Ma, J.; Protter, P.; San Martin, J.; Rorres, S. Numerical method for backward stochastic differential equations, Ann. Appl. Probab., Volume 12 (2000), pp. 302-316

[8] Nouy, A. Recent developments in spectral stochastic methods for the numerical solution of stochastic partial differential equations, Arch. Comput. Methods Eng., Volume 16 (2009), pp. 251-285

[9] Pardoux, E.; Peng, S. Adapted solution of backward stochastic equation, Systems Control Lett., Volume 14 (1990), pp. 55-61

[10] Peng, S.; Xu, M. Numerical algorithms for 1-d backward stochastic differential equations: convergence and simulations, ESAIM: M2AN, Volume 45 (2011), pp. 335-360

[11] P. Wang, X. Zhang, Numerical analysis on backward stochastic differential equations by a finite transposition method, preprint.

[12] Zhang, J. A numerical scheme for BSDEs, Ann. Appl. Probab., Volume 14 (2004), pp. 459-488

Cité par Sources :