Algebraic Geometry
Jet schemes of toric surfaces
[Espaces de jets des surfaces toriques]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 9-10, pp. 563-566.

Voir la notice de l'article provenant de la source Numdam

For mN, m1, we determine the irreducible components of the m-th jet scheme of a toric surface S. For m big enough, we connect the number of a class of these irreducible components to the number of exceptional divisors on the minimal resolution of S.

Pour mN, m1, on détermine les composantes irréductibles des m-espaces des jets dʼune surface torique S. Pour m assez grand, on relie le nombre dʼune classe de ces composantes au nombre de diviseur exceptionnel sur la résolution minimale de S.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.03.018

Mourtada, Hussein 1

1 Laboratoire de mathématiques de Versailles, UMR CNRS 8100, bâtiment de Fermat, 45, avenue des États-Unis, 78035 Versailles cedex, France
@article{CRMATH_2011__349_9-10_563_0,
     author = {Mourtada, Hussein},
     title = {Jet schemes of toric surfaces},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {563--566},
     publisher = {Elsevier},
     volume = {349},
     number = {9-10},
     year = {2011},
     doi = {10.1016/j.crma.2011.03.018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2011.03.018/}
}
TY  - JOUR
AU  - Mourtada, Hussein
TI  - Jet schemes of toric surfaces
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 563
EP  - 566
VL  - 349
IS  - 9-10
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2011.03.018/
DO  - 10.1016/j.crma.2011.03.018
LA  - en
ID  - CRMATH_2011__349_9-10_563_0
ER  - 
%0 Journal Article
%A Mourtada, Hussein
%T Jet schemes of toric surfaces
%J Comptes Rendus. Mathématique
%D 2011
%P 563-566
%V 349
%N 9-10
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2011.03.018/
%R 10.1016/j.crma.2011.03.018
%G en
%F CRMATH_2011__349_9-10_563_0
Mourtada, Hussein. Jet schemes of toric surfaces. Comptes Rendus. Mathématique, Tome 349 (2011) no. 9-10, pp. 563-566. doi : 10.1016/j.crma.2011.03.018. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2011.03.018/

[1] Bouvier, C.; Gonzalez-Sprinberg, G. Système générateur minimal, diviseurs essentiels et G-désingularisations de variétés toriques, Tohoku Math. J. (2), Volume 47 (1995) no. 2, pp. 125-149

[2] Denef, J.; Loeser, F. Germs of arcs on singular algebraic varieties and motivic integration, Invent. Math., Volume 135 (1999) no. 1, pp. 201-232

[3] R. Docampo, Arcs on determinantal varieties, preprint, 2010.

[4] Ein, L.; Mustata, M. Jet schemes and singularities, Proc. Sympos. Pure Math., Part 2, vol. 80, Amer. Math. Soc., Providence, RI, 2009, pp. 505-546

[5] Goward, R.; Smith, K. The jet scheme of a monomial scheme, Comm. Algebra, Volume 34 (2006) no. 5, pp. 1591-1598

[6] Ishii, S.; Kollár, J. The Nash problem on arc families of singularities, Duke Math. J., Volume 120 (2003) no. 3, pp. 601-620

[7] Kempf, G.; Knudsen, F.F.; Mumford, D.; Saint-Donat, B. Toroidal Embeddings I, Lecture Notes in Math., vol. 339, Springer-Verlag, Berlin–New York, 1973

[8] M. Kontsevich, Lecture at Orsay, 1995.

[9] Kouchnirenko, A.G. Polyèdres de Newton et nombres de Milnor, Invent. Math., Volume 32 (1976), pp. 1-31

[10] Lejeune-Jalabert, M. Arcs analytiques et résolution minimale des singularités des surfaces quasi-homogènes, Séminaire sur les Singularités des Surfaces, Lecture Notes in Math., vol. 777, Springer, Berlin, 1980, pp. 304-336

[11] H. Mourtada, Jet schemes of complex branches and equisingularity, Ann. Inst. Fourier 61 (2011), in press.

[12] H. Mourtada, Jet schemes of rational double point singularities, preprint, 2010.

[13] Mustata, M. Jet schemes of locally complete intersection canonical singularities, Invent. Math., Volume 145 (2001) no. 3, pp. 397-424 (with an appendix by David Eisenbud and Edward Frenkel)

[14] Nash, J.F. Arc structure of singularities, Duke Math. J., Volume 81 (1995) no. 1, pp. 31-38

[15] Oda, T. Convex Bodies and Algebraic Geometry. An Introduction to the Theory of Toric Varieties (3), Results in Mathematics and Related Areas (3), vol. 15, Springer-Verlag, Berlin, 1988

[16] Riemenschneider, O. Zweidimensionale Quotientensingularitäten: Gleichungen und Syzygien, Arch. Math. (Basel), Volume 37 (1981) no. 5, pp. 406-417

Cité par Sources :