Voir la notice de l'article provenant de la source Numdam
It is shown that the Dirac measure defined on the Banach space of complex valued continuous functions defined on the interval , has an absolutely continuous restriction to an infinite dimensional subspace R of , that is
Nous montrons que la mesure de Dirac définie sur lʼespace de Banach de fonctions continues à valeurs complexes définies sur lʼintervalle , possède une restriction absolument continue sur un sous-espace de dimension infinie R de , cʼest-à-dire
Alcántara-Bode, Julio 1
@article{CRMATH_2011__349_7-8_357_0, author = {Alc\'antara-Bode, Julio}, title = {Absolutely continuous restrictions of a {Dirac} measure and non-trivial zeros of the {Riemann} zeta function}, journal = {Comptes Rendus. Math\'ematique}, pages = {357--359}, publisher = {Elsevier}, volume = {349}, number = {7-8}, year = {2011}, doi = {10.1016/j.crma.2011.03.002}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2011.03.002/} }
TY - JOUR AU - Alcántara-Bode, Julio TI - Absolutely continuous restrictions of a Dirac measure and non-trivial zeros of the Riemann zeta function JO - Comptes Rendus. Mathématique PY - 2011 SP - 357 EP - 359 VL - 349 IS - 7-8 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2011.03.002/ DO - 10.1016/j.crma.2011.03.002 LA - en ID - CRMATH_2011__349_7-8_357_0 ER -
%0 Journal Article %A Alcántara-Bode, Julio %T Absolutely continuous restrictions of a Dirac measure and non-trivial zeros of the Riemann zeta function %J Comptes Rendus. Mathématique %D 2011 %P 357-359 %V 349 %N 7-8 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2011.03.002/ %R 10.1016/j.crma.2011.03.002 %G en %F CRMATH_2011__349_7-8_357_0
Alcántara-Bode, Julio. Absolutely continuous restrictions of a Dirac measure and non-trivial zeros of the Riemann zeta function. Comptes Rendus. Mathématique, Tome 349 (2011) no. 7-8, pp. 357-359. doi : 10.1016/j.crma.2011.03.002. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2011.03.002/
[1] An integral equation formulation of the Riemann hypothesis, Integral Equations Operator Theory, Volume 17 (1993) no. 2, pp. 151-168
[2] An algorithm for the evaluation of certain Fredholm determinants, Integral Equations Operator Theory, Volume 39 (2001) no. 2, pp. 153-158
[3] Introduction to Analytic Number Theory, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1976
[4] A closure problem related to the Riemann zeta-function, Proc. Natl. Acad. Sci. USA, Volume 41 (1955), pp. 312-314
[5] The “full Müntz theorem” revisited, Constr. Approx., Volume 21 (2005) no. 3, pp. 319-335
[6] Introduction to Real Functions and Orthogonal Expansions, Oxford University Press, New York, 1965
[7] Trigonometric Series, vols. I, II, Cambridge University Press, London, 1968
Cité par Sources :