Harmonic Analysis/Functional Analysis
Analysis of some injection bounds for Sobolev spaces by wavelet decomposition
[Analyse de quelques bornes dʼinjection des espaces de Sobolev, en utilisant la décomposition par ondelettes]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 7-8, pp. 421-423.

Voir la notice de l'article provenant de la source Numdam

We consider the Sobolev spaces Hs(Ω) and H0s(Ω) and the Besov spaces B2,1/2(Ω), where Ω is a sufficiently regular (see Lemma 2) subdomain of R2. It is well known that for the values of s[0,1/2) the two Sobolev spaces coincide, with equivalence of the norms, and that the inclusion B2,1/2(Ω)Hs(Ω) holds. The Note is concerned with the explicit analysis of the constants appearing in the continuity bounds for the injections Hs(Ω)H0s(Ω) and B2,1/2(Ω)Hs(Ω) and of their dependence on the regularity s of the spaces. The analysis is carried out by using the wavelet characterization of the corresponding norms.

On considère les espaces de Sobolev Hs(Ω) et H0s(Ω), et lʼespace de Besov B2,1/2(Ω), ou Ω est un domaine suffisamment régulier (voir Lemme 2) de R2. On sait que pour des valeurs de s[0,1/2) les deux espaces de Sobolev coïncident, avec équivalence des normes, et quʼon a lʼinclusion B2,1/2(Ω)Hs(Ω). Cet article donne une analyse explicite des constantes qui apparaissent dans les bornes dʼinclusion Hs(Ω)H0s(Ω) and B2,1/2(Ω)Hs(Ω) et, plus précisément, de leur dépendance du paramètre de régularité s. On utilise pour cela la caractérisation par ondelettes des normes correspondantes.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.02.015

Bertoluzza, Silvia 1 ; Falletta, Silvia 2

1 IMATI-CNR, V. Ferrata 1, 27100 Pavia, Italy
2 Dip. Matematica, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
@article{CRMATH_2011__349_7-8_421_0,
     author = {Bertoluzza, Silvia and Falletta, Silvia},
     title = {Analysis of some injection bounds for {Sobolev} spaces by wavelet decomposition},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {421--423},
     publisher = {Elsevier},
     volume = {349},
     number = {7-8},
     year = {2011},
     doi = {10.1016/j.crma.2011.02.015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2011.02.015/}
}
TY  - JOUR
AU  - Bertoluzza, Silvia
AU  - Falletta, Silvia
TI  - Analysis of some injection bounds for Sobolev spaces by wavelet decomposition
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 421
EP  - 423
VL  - 349
IS  - 7-8
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2011.02.015/
DO  - 10.1016/j.crma.2011.02.015
LA  - en
ID  - CRMATH_2011__349_7-8_421_0
ER  - 
%0 Journal Article
%A Bertoluzza, Silvia
%A Falletta, Silvia
%T Analysis of some injection bounds for Sobolev spaces by wavelet decomposition
%J Comptes Rendus. Mathématique
%D 2011
%P 421-423
%V 349
%N 7-8
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2011.02.015/
%R 10.1016/j.crma.2011.02.015
%G en
%F CRMATH_2011__349_7-8_421_0
Bertoluzza, Silvia; Falletta, Silvia. Analysis of some injection bounds for Sobolev spaces by wavelet decomposition. Comptes Rendus. Mathématique, Tome 349 (2011) no. 7-8, pp. 421-423. doi : 10.1016/j.crma.2011.02.015. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2011.02.015/

[1] Bertoluzza, S. Substructuring preconditioners for the three fields domain decomposition method, Math. Comp., Volume 73 (2003) no. 246, pp. 659-689

[2] Bertoluzza, S.; Brezzi, F.; Sangalli, G. The method of mothers for non-overlapping non-matching DDM, Numer. Math., Volume 107 (2007) no. 3, pp. 397-431

[3] S. Bertoluzza, S. Falletta, Analysis of some injection bounds for Besov spaces by using wavelet schemes, Technical report, 2011.

[4] Cohen, A. Numerical Analysis of Wavelet Methods, Studies in Mathematics and Its Applications, vol. 32, North-Holland, Amsterdam, 2003

[5] S. Falletta, Analysis of the mortar method with approximate integration: the effect of cross-points, Technical report 1298, I.A.N., 2002.

[6] Lions, J.L.; Magenes, E. Non Homogeneous Boundary Value Problems and Applications, vol. I, Springer, 1972

[7] Triebel, H. Interpolation Theory, Function Spaces, Differential Operators, Heidelberg, 1995

Cité par Sources :